Abstract
This paper presents an innovative method to solve the reconfiguration problem in a distribution network. The main motivation of this work is to take advantage of the power flow analysis repetition when reconfiguration leads the network to a previous configuration due to cyclical loading pattern. The developed methodology combines an optimization technique with fuzzy theory to gain efficiency without losing robustness. In this methodology, the power flow is estimated by well-trained neo-fuzzy neuron network to achieve computing time reduction in the evaluation of individuals during evolutionary algorithm runs. It is noteworthy that the proposed methodology is scalable and its benefits increase as larger feeders are dealt. The effectiveness of the proposed method is demonstrated through examples. The overall performance achieved in the experiments has proved that it is also proper to real time context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chis, M., Salama, M.M.A., Jayaram, S.: Capacitor Placement in Distribution Systems Using Heuristic Search Strategies. IEE Proceedings on Generation, Transmission and Distribution 144(3), 225–230 (1997)
Das, D.: Reconfiguration of Distribution System using Fuzzy Multi-objective Approach. International Journal of Electrical Power & Energy Systems 28(5), 331–338 (2006)
Venkatesh, B., Ranjan, R.: Optimal Radial Distribution System Reconfiguration using Fuzzy Adaptation of Evolutionary Programming. Electrical Power & Energy Systems 25, 775–780 (2003)
Kalesar, B.M., Seifi, A.R.: Fuzzy Load Flow in Balanced and Unbalanced Radial Distribution Systems incorporating Composite Load Model. Electrical Power & Energy Systems 32(1), 17–23 (2010)
Zhou, Z.Q., Shirmohammadi, D., Liu, W.-H.E.: Distribution Feeder Reconfiguration for Service Restoration and Load Balancing. IEEE Transactions on Power Systems 12(2), 724–729 (1997)
Aoki, K., Nara, K., Itoh, M., Satoh, T., Kuwabara, H.: A New Algorithm for Service Restoration in Distribution Systems. IEEE Transactions on Power Delivery 4(3), 1832–1839 (1989)
Nara, K., Mishima, Y., Satoh, T.: Network Reconfiguration for Loss Minimization and Load Balancing. In: Power Engineering Society General Meeting, Ibaraki Univ., Japan, pp. 2413–2418. IEEE, Los Alamitos (2003)
Sarfi, R.J., Salama, M.A., Chikhani, A.Y.: A Survey of the State of the Art in Distribution System Reconfiguration for System Loss Reduction. Electric Power Systems Research 31(1), 61–70 (1994)
Lee, S.J., Lim, S.I., Bokk-Shin, A.: Service Restoration of Primary Distribution Systems based on Fuzzy Evaluation of Multi-criteria. IEEE Transactions on Power Systems 13(3), 1156–1162 (1998)
Sahoo, N.C., Ranjan, R., Prasad, K., Chaturvedi, A.: A Fuzzy-tuned Genetic Algorithm for Optimal Reconfigurations of Radial Distribution Network. Wiley InterScience, European Transactions on Electrical Power 17(1), 97–111 (2007)
Song, Y.H., Wang, G.S., Johns, A.T., Wang, P.Y.: Distribution Network Reconfiguration for Loss Reduction using Fuzzy controlled Evolutionary Programming. In: IEE Proceedings on Generation, Transmission and Distribution, vol. 144(4), pp. 345–350 (July 1997)
Huang, Y.C.: Enhanced Genetic Algorithm-based Fuzzy Multi-objective Approach to Distribution Network Reconfiguration. In: IEE Proceedings on Generation, Transmission and Distribution, vol. 149(5), pp. 615–620 (September 2002)
Hsu, Y.Y., Kuo, H.C.: A Heuristic based Fuzzy Reasoning Approach for Distribution System Service Restoration. IEEE Transactions on Power Delivery 9(2), 948–953 (1994)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Naga Raj, B., Prakasa Rao, K.S.: A new Fuzzy Reasoning Approach for Load Balancing in Distribution System. IEEE Transactions on Power Systems 10(3), 1426–1432 (1995)
Hsiao, Y.T., Chien, C.Y.: Enhancement of Restoration Service in Distribution Systems Using a Combination Fuzzy-GA Method. IEEE Transactions on Power Systems 15(4), 1394–1400 (2000)
Lopez, E., Opazo, H., Garcia, L., Bastard, P.: Online Reconfiguration considering Variability Demand: Applications to Real Networks. IEEE Transactions on Power Systems 19(1), 549–553 (2004)
Yamakawa, T., Uchino, E., Miki, T., Kusabagi, H.: A Neo Fuzzy Neuron and its Applications to System Identification and Predictions to System Behavior. In: Proceedings of the 2nd IIZUKA, IIizuka, Japan, pp. 477–483 (1992)
Pereira, M.A., Murari, C.F., Castro Jr., C.A.: A Fuzzy Heuristic Algorithm for Distribution Systems’ Service Restoration. Fuzzy Sets and Systems 102(1), 125–133 (1999)
Hsu, Y.Y., Yang, C.C.: Fast Voltage Estimation using Artificial Neural Network. Electrical Power System 27(11), 1–9 (1993)
Jang, J.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Inteligence. Prentice Hall, New Jersey (1997)
Baran, M., Wu, F.: Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing. IEEE Transactions on Power Delivery 4(2), 1401–1407 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Resende Barbosa, C.H.N., Caminhas, W.M., de Vasconcelos, J.A. (2011). Adaptive Technique to Solve Multi-objective Feeder Reconfiguration Problem in Real Time Context. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-19893-9_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19892-2
Online ISBN: 978-3-642-19893-9
eBook Packages: Computer ScienceComputer Science (R0)