[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adaptive Technique to Solve Multi-objective Feeder Reconfiguration Problem in Real Time Context

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Abstract

This paper presents an innovative method to solve the reconfiguration problem in a distribution network. The main motivation of this work is to take advantage of the power flow analysis repetition when reconfiguration leads the network to a previous configuration due to cyclical loading pattern. The developed methodology combines an optimization technique with fuzzy theory to gain efficiency without losing robustness. In this methodology, the power flow is estimated by well-trained neo-fuzzy neuron network to achieve computing time reduction in the evaluation of individuals during evolutionary algorithm runs. It is noteworthy that the proposed methodology is scalable and its benefits increase as larger feeders are dealt. The effectiveness of the proposed method is demonstrated through examples. The overall performance achieved in the experiments has proved that it is also proper to real time context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chis, M., Salama, M.M.A., Jayaram, S.: Capacitor Placement in Distribution Systems Using Heuristic Search Strategies. IEE Proceedings on Generation, Transmission and Distribution 144(3), 225–230 (1997)

    Article  Google Scholar 

  2. Das, D.: Reconfiguration of Distribution System using Fuzzy Multi-objective Approach. International Journal of Electrical Power & Energy Systems 28(5), 331–338 (2006)

    Article  Google Scholar 

  3. Venkatesh, B., Ranjan, R.: Optimal Radial Distribution System Reconfiguration using Fuzzy Adaptation of Evolutionary Programming. Electrical Power & Energy Systems 25, 775–780 (2003)

    Article  Google Scholar 

  4. Kalesar, B.M., Seifi, A.R.: Fuzzy Load Flow in Balanced and Unbalanced Radial Distribution Systems incorporating Composite Load Model. Electrical Power & Energy Systems 32(1), 17–23 (2010)

    Article  Google Scholar 

  5. Zhou, Z.Q., Shirmohammadi, D., Liu, W.-H.E.: Distribution Feeder Reconfiguration for Service Restoration and Load Balancing. IEEE Transactions on Power Systems 12(2), 724–729 (1997)

    Article  Google Scholar 

  6. Aoki, K., Nara, K., Itoh, M., Satoh, T., Kuwabara, H.: A New Algorithm for Service Restoration in Distribution Systems. IEEE Transactions on Power Delivery 4(3), 1832–1839 (1989)

    Article  Google Scholar 

  7. Nara, K., Mishima, Y., Satoh, T.: Network Reconfiguration for Loss Minimization and Load Balancing. In: Power Engineering Society General Meeting, Ibaraki Univ., Japan, pp. 2413–2418. IEEE, Los Alamitos (2003)

    Google Scholar 

  8. Sarfi, R.J., Salama, M.A., Chikhani, A.Y.: A Survey of the State of the Art in Distribution System Reconfiguration for System Loss Reduction. Electric Power Systems Research 31(1), 61–70 (1994)

    Article  Google Scholar 

  9. Lee, S.J., Lim, S.I., Bokk-Shin, A.: Service Restoration of Primary Distribution Systems based on Fuzzy Evaluation of Multi-criteria. IEEE Transactions on Power Systems 13(3), 1156–1162 (1998)

    Article  Google Scholar 

  10. Sahoo, N.C., Ranjan, R., Prasad, K., Chaturvedi, A.: A Fuzzy-tuned Genetic Algorithm for Optimal Reconfigurations of Radial Distribution Network. Wiley InterScience, European Transactions on Electrical Power 17(1), 97–111 (2007)

    Article  Google Scholar 

  11. Song, Y.H., Wang, G.S., Johns, A.T., Wang, P.Y.: Distribution Network Reconfiguration for Loss Reduction using Fuzzy controlled Evolutionary Programming. In: IEE Proceedings on Generation, Transmission and Distribution, vol. 144(4), pp. 345–350 (July 1997)

    Google Scholar 

  12. Huang, Y.C.: Enhanced Genetic Algorithm-based Fuzzy Multi-objective Approach to Distribution Network Reconfiguration. In: IEE Proceedings on Generation, Transmission and Distribution, vol. 149(5), pp. 615–620 (September 2002)

    Google Scholar 

  13. Hsu, Y.Y., Kuo, H.C.: A Heuristic based Fuzzy Reasoning Approach for Distribution System Service Restoration. IEEE Transactions on Power Delivery 9(2), 948–953 (1994)

    Article  Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Naga Raj, B., Prakasa Rao, K.S.: A new Fuzzy Reasoning Approach for Load Balancing in Distribution System. IEEE Transactions on Power Systems 10(3), 1426–1432 (1995)

    Article  Google Scholar 

  16. Hsiao, Y.T., Chien, C.Y.: Enhancement of Restoration Service in Distribution Systems Using a Combination Fuzzy-GA Method. IEEE Transactions on Power Systems 15(4), 1394–1400 (2000)

    Article  Google Scholar 

  17. Lopez, E., Opazo, H., Garcia, L., Bastard, P.: Online Reconfiguration considering Variability Demand: Applications to Real Networks. IEEE Transactions on Power Systems 19(1), 549–553 (2004)

    Article  Google Scholar 

  18. Yamakawa, T., Uchino, E., Miki, T., Kusabagi, H.: A Neo Fuzzy Neuron and its Applications to System Identification and Predictions to System Behavior. In: Proceedings of the 2nd IIZUKA, IIizuka, Japan, pp. 477–483 (1992)

    Google Scholar 

  19. Pereira, M.A., Murari, C.F., Castro Jr., C.A.: A Fuzzy Heuristic Algorithm for Distribution Systems’ Service Restoration. Fuzzy Sets and Systems 102(1), 125–133 (1999)

    Article  Google Scholar 

  20. Hsu, Y.Y., Yang, C.C.: Fast Voltage Estimation using Artificial Neural Network. Electrical Power System 27(11), 1–9 (1993)

    Google Scholar 

  21. Jang, J.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Inteligence. Prentice Hall, New Jersey (1997)

    Google Scholar 

  22. Baran, M., Wu, F.: Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing. IEEE Transactions on Power Delivery 4(2), 1401–1407 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Resende Barbosa, C.H.N., Caminhas, W.M., de Vasconcelos, J.A. (2011). Adaptive Technique to Solve Multi-objective Feeder Reconfiguration Problem in Real Time Context. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics