[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Vertex Distinguishing Total Coloring of Ladder Graphs

  • Conference paper
Information and Automation (ISIA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 86))

Included in the following conference series:

  • 1221 Accesses

Abstract

Let G be a simple and connected graph, and |V(G)| ≥ 2. A proper k -total-coloring of a graph G is a mapping f from V(G) ∪ E(G) into {1,2, ⋯ ,k} such that every two adjacent or incident elements of V(G) ∪ E(G) are assigned different colors. Let C(u) = f(u) ∪ {f(uv)|uv ∈ E(G)} be the neighbor color-set of u , if C(u) ≠ C(v) for any two vertices u and v of V(G), we say that f is a vertex-distinguishing proper k -total-coloring of G , or a k -VDT -coloring of G for short. The minimal number of all over k -VDT -colorings of G is denoted by χ vt (G), and it is called the VDTC chromatic number of G . In this paper, we obtain a new sequence of all combinations of 4 elements selected from the set {1,2, ⋯ ,n} by changing some combination positions appropriately on the lexicographical sequence, we call it the new triangle sequence. Using this technique, we obtain vertex distinguishing total chromatic number of ladder graphs.L m  ≅ P m ×P 2 as follows: For ladder graphs L m and for any integer n = 9 + 8k(k = 1,2, ⋯ ). If \(\frac{(^{n-1}_{~4})}{2}+2 <m \leq \frac{(^{n}_{4})}{2}+2\), then χ vt (L m ) = n.

Supported by the NSFC of China (No.10771091) and Science Research Found of Ningxia University (No.(E)ndzr09-15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burris, A.C., Schelp, R.H.: Vertex-distinguishing Proper Edge-colorings. J. of Graph Theory 26(2), 3–82 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazgan, C., Harkat-Benhamdine, A., Li, H., Woźniak, M.: On the vertex-distinguishing proper edge-coloring of graph. J. of Combine. Theory, Ser. B 75, 288–301 (1999)

    Article  MATH  Google Scholar 

  3. Balister, P.N., Riordan, O.M., Schelp, R.H.: Vertex-distinguishing coloring of graphs. J. of Graph Theory 42, 95–109 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, Z.F., Liu, L.Z., Wang, J.F.: Adjacent strong edge coloring of graphs. J. Applied Mathematics Letters 15, 623–626 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hatami, H.: Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. of Combinatorial Theory 95, 246–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balister, P.N., Györi, E., Lehel, J., Schelp, P.H.: Adjacent vertex distinguishing edgecolorings. SIAM Journal On Discrete Mathematics 21, 237–250 (2006)

    Article  MATH  Google Scholar 

  7. Zhang, Z.F., Li, J.W., Chen, X.E., et al.: D(β) Vertex-distinguishing proper edgecoloring of graphs. Acta Mathematica Sinica, Chinese Series 49(3), 703–708 (2006)

    MathSciNet  Google Scholar 

  8. Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong Edge Colorings of Graphs. Discrete Mathematics 306(23), 3005–3010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, Z., Zhang, J., Wang, J.: The total chromatic number of some graphs. Sci. China Ser. A 31, 1434–1441 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Zhang, Z., Wang, J.: A summary of the progress on total colorings of graphs. Adv. in Math (China) 21, 90–397 (1992)

    MathSciNet  Google Scholar 

  11. Zhang, Z., Chen, X., Li, J., et al.: On adjacent-vertex-distinguishing total coloring of graphs. Sci. China Ser. A 48(3), 289–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H.: On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ(G) = 3. Journal of Combinatorial Optimization 14(1), 87–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X.: On the adjacent vertex distinguishing total coloring numbers of graphs with Δ = 3. Discrete Mathematics 308, 4003–4007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hulgan, J.: Concise proofs for adjacent vertex-distinguishing total colorings. Discrete Mathematics 309(8), 2548–2550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, W., Wang, Y.: Adjacent vertex distinguishing total coloring of graphs with lower average degree. Taiwanese J. Math. 12, 979–990 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Wang, W.: Adjacent vertex distinguishing total colorings of outerplanar graphs. Journal of Combinatorial Optimization (2008)

    Google Scholar 

  17. Zhang, Z., Qiu, P., Xu, B., et al.: Vertex-distinguishing total coloring of graphs. Ars Combinatoria. 87, 33–45 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, Z., Li, J., Chen, X., et al.: D(β)-vertex-distinguishing total colorings of graphs. Science in China Series A: Mathematics 48(10), 1430–1440 (2006) (in Chinese)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Z., Cheng, H., Yao, B., et al.: On The adjacent-vertex-strongly-distinguishing total coloring of graphs. Science in China Series A: Mathematics 51(3), 427–436 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Z., Qiu, P., Xu, B., et al.: Vertex distinguishing total coloring of graphs. Ars Combinatoria 87, 33–45 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Chartrand, G., Linda, L.F.: Graphs and Diagraphs, 2nd edn. Wadswirth Brooks/Cole, Monterey, CA (1986)

    Google Scholar 

  22. Hansen, P., Marcotte, O.: Graph coloring and application. AMS providence, Rhode Island USA (1999)

    MATH  Google Scholar 

  23. West, D.B.: Introduction to Graph Theory, 2nd edn. Person Education, Inc., Prentice Hall (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bao, S., Wang, Z., Wen, F. (2011). Vertex Distinguishing Total Coloring of Ladder Graphs. In: Qi, L. (eds) Information and Automation. ISIA 2010. Communications in Computer and Information Science, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19853-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19853-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19852-6

  • Online ISBN: 978-3-642-19853-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics