[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining Sequential Patterns from MODIS Time Series for Cultivated Area Mapping

  • Chapter
  • First Online:
Advancing Geoinformation Science for a Changing World

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC,volume 1))

Abstract

To predict and respond to famine and other forms of food insecurity, different early warning systems are using remote analyses of crop condition and agricultural production by using satellite-based information. To improve these predictions, a reliable estimation of the cultivated area at a national scale must be carried out. In this study, we developed a data mining methodology for extracting cultivated domain patterns based on their temporal behavior as captured in time-series of moderate resolution remote sensing MODIS images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrawal, R., Srikant, R. (1995) Mining sequential patterns, in: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3-14.

    Google Scholar 

  • Catlett, J. (1991) On changing continuous attributes into ordered discrete attributes, in Machine Learning EWSL-91, Springer, pp. 164-178.

    Google Scholar 

  • Haralick, R. (1979) Statistical and structural approaches to texture image type analysis, in: Proceedings of IEEE, 67, pp. 786-804.

    Article  Google Scholar 

  • Haralick, R., Shanmugam, K, Dinstein, I. (1973) Textural features for image classification, IEEE Transactions on Systems, Man and Cybernetics, 3(6), pp. 610-621.

    Article  Google Scholar 

  • Julea, A., Méger, N, Bolon, P. (2008) On mining pixel based evolution classes in satellite image time series, in: Proceedings of the 5th Conf. on Image Information Mining: pursuing automation of geospatial intelligence for environment and security (ESA-EUSC 2008), 6 pgs.

    Google Scholar 

  • Julea, A., Méger, N., Bolon P., Rigotti, C., Doin, M.P., Lasserre, C., Trouvé, E., Lazarescu, V. (2011) Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns, IEEE Transactions on Geoscience and Remote Sensing, 49(4), 14 pgs.

    Google Scholar 

  • Julea, A., Méger, N., Trouvé, E. (2006) Sequential patterns extraction in multitemporal satellite images, in : Proceedings of the 17th European Conference on Machine Learning and 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2006) - Berlin (Germany), Berlin (Allemagne), September 2006, pp. 94-97.

    Google Scholar 

  • Petitjean, F., Gançarski, P., Masseglia, F., Forestier, G. (2010) Analysing satellite image time series by means of pattern mining, in: Proceedings of Intelligent Data Engineering and Automated Learning - IDEAL 2010, 11th International Conference, Paisley (UK), September 1-3, 2010, Springer, Lecture Notes in Computer Science, 6283, pp. 45-52.

    Article  Google Scholar 

  • Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Chong, Y.W. (2010) Mining Multi-Dimensional and Multi-Level Sequential Patterns, in : ACM Transactions on Knowledge Discovery from Data (TKDD), January 2010, 1), 37 pgs.

    Google Scholar 

  • Rouse, I. (1974) The explanation of culture change, Science, 185, pp. 343-344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Pitarch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pitarch, Y., Vintrou, E., Badra, F., Bégué, A., Teisseire, M. (2011). Mining Sequential Patterns from MODIS Time Series for Cultivated Area Mapping. In: Geertman, S., Reinhardt, W., Toppen, F. (eds) Advancing Geoinformation Science for a Changing World. Lecture Notes in Geoinformation and Cartography(), vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19789-5_3

Download citation

Publish with us

Policies and ethics