Abstract
The Cell processor is a typical example of a heterogeneous multiprocessor on-chip architecture that uses several levels of parallelism to deliver high performance. Reducing the gap between peak performance and effective performance is the challenge for software tool developers and the application developers. Image processing and media applications are typical “main stream” applications. We use the Harris algorithm for the detection of interest points in an image as a benchmark to compare the performance of several parallel schemes on a Cell processor. The impact of the DMA controlled data transfers and the synchronizations between SPEs explains the differences between the performance of the different parallelization schemes. The scalability of the architecture is modeled and evaluated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2006), April 4-7. IEEE Computer Society, San Jose (2006)
Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model for the cell be architecture. In: Proceedings of the ACM/IEEE Supercomputing Conference (2006)
Benthin, C., Wald, I., Scherbaum, M., Friedrich, H.: Ray tracing on the cell processor. In: IEEE Symposium on Interactive Ray Tracing (2006)
Driscoll, M.A., Daasch, W.R.: Accurate predictions of parallel program execution time. J. Parallel Distrib. Comput. 25(1), 16–30 (1995)
Eichenberger, A.E., O’Brien, J.K., O’Brien, K.M., Wu, P., Chen, T., Oden, P.H., Prener, D.A., Shepherd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind, M.K., Archambault, R., Gao, Y., Koo, R.: Using advanced compiler technology to exploit the performance of the cell broadband engineTM architecture. IBM Syst. J. 45(1), 59–84 (2006)
Fatahalian, K., Knight, T.J., Houston, M.: Sequoia: Programming the memory hierarchy. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006)
Greene, J., Cooper., R.: A parallel 64k complex fft algorithm for the ibm/sony/toshiba cell broadband engine processor. In: Global Signal Processing Expo. (2005)
Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th ALVEY Vision Conference (1988)
IBM. Cell Broadband Engine Programming Handbook. IBM, version 1.0 edn. (2006)
Ramirez, X., Jimenez-Gonzalez, A., Martorell, D.: Performance analysis of cell broadband engine for high memory bandwidth applications. In: Proceedings of the IEEE International Symposium on Performance Analysis of Systems & Software (2007)
Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: Built for Speed. IEEE Micro 26(3), 10–23 (2006)
McCool, M.D.: Data-parallel programming on the cell be and the gpu using the rapidmind development platform. In: GSPx Multicore Applications Conference (2006)
Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover. In tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University (September 1980); Available as Stanford AIM-340, CS-80-813 and republished as a Carnegie Mellon University Robotics Institue Technical Report to increase availability
Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: Mpi microtask for programming the cell broadband enginetm processor. IBM Syst. J. 45(1), 85–102 (2006)
Petrini, F., Fossum, G., Fernandez, J., Varbanescu, A.L., Kistler, M., Perrone, M.: Multicore surprises: Lessons learned from optimizing sweep3d on the cell broadband engine. In: IEEE/ACM International Parallel and Distributed Processing Symposium (March 2007)
Pham, D.C., Aipperspach, T., Boerstler, D., Bolliger, M., Chaudhry, R., Cox, D., Harvey, P., Harvey, P.M., Hofstee, H.P., Johns, C., Kahle, J., Kameyama, A., Keaty, J., Masubuchi, Y., Pham, M., Pille, J., Posluszny, S., Riley, M., Stasiak, D.L., Suzuoki, M., Takahashi, O., Warnock, J., Weitzel, S., Wendel, D., Yazawa, K.: Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor. IEEE Journal of Solid-State Circuits 41(1), 179–196 (2006)
Saidani, T., Piskorski, S., Lacassagne, L., Bouaziz, S.: Parallelization schemes for memory optimization on the cell processor: a case study of image processing algorithm. In: MEDEA 2007: Proceedings of the 2007 Workshop on MEmory Performance, pp. 9–16. ACM, New York (2007)
Servat, H., González-Alvarez, C., Aguilar, X., Cabrera-Benitez, D., Jiménez-González, D.: Drug design issues on the cell BE. In: Stenström, P., Dubois, M., Katevenis, M., Gupta, R., Ungerer, T. (eds.) HiPEAC 2007. LNCS, vol. 4917, pp. 176–190. Springer, Heidelberg (2008)
Vandierendonck, H., Rul, S., Questier, M., De Bosschere, K.: Experiences with parallelizing a bio-informatics program on the cell BE. In: Stenström, P., Dubois, M., Katevenis, M., Gupta, R., Ungerer, T. (eds.) HiPEAC 2007. LNCS, vol. 4917, pp. 161–175. Springer, Heidelberg (2008)
Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: Scientific computing kernels on the cell processor. Int. J. Parallel Program. 35(3), 263–298 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Saidani, T., Lacassagne, L., Falcou, J., Tadonki, C., Bouaziz, S. (2011). Parallelization Schemes for Memory Optimization on the Cell Processor: A Case Study on the Harris Corner Detector. In: Stenström, P. (eds) Transactions on High-Performance Embedded Architectures and Compilers III. Lecture Notes in Computer Science, vol 6590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19448-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-19448-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19447-4
Online ISBN: 978-3-642-19448-1
eBook Packages: Computer ScienceComputer Science (R0)