[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards an Efficient Tile Matrix Inversion of Symmetric Positive Definite Matrices on Multicore Architectures

  • Conference paper
High Performance Computing for Computational Science – VECPAR 2010 (VECPAR 2010)

Abstract

The algorithms in the current sequential numerical linear algebra libraries (e.g. LAPACK) do not parallelize well on multicore architectures. A new family of algorithms, the tile algorithms, has recently been introduced. Previous research has shown that it is possible to write efficient and scalable tile algorithms for performing a Cholesky factorization, a (pseudo) LU factorization, a QR factorization, and computing the inverse of a symmetric positive definite matrix. In this extended abstract, we revisit the computation of the inverse of a symmetric positive definite matrix. We observe that, using a dynamic task scheduler, it is relatively painless to translate existing LAPACK code to obtain a ready-to-be-executed tile algorithm. However we demonstrate that, for some variants, non trivial compiler techniques (array renaming, loop reversal and pipelining) need then to be applied to further increase the parallelism of the application. We present preliminary experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. BLAS: Basic linear algebra subprograms, http://www.netlib.org/blas/

  2. Agullo, E., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Langou, J., Ltaief, H.: PLASMA Users’ Guide. Technical report, ICL, UTK (2009)

    Google Scholar 

  3. Agullo, E., Hadri, B., Ltaief, H., Dongarrra, J.: Comparative study of one-sided factorizations with multiple software packages on multi-core hardware. In: SC 2009: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–12. ACM, New York (2009)

    Chapter  Google Scholar 

  4. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-based Approach. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J.W., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  6. Bientinesi, P., Gunter, B., van de Geijn, R.: Families of algorithms related to the inversion of a symmetric positive definite matrix. ACM Trans. Math. Softw. 35(1), 1–22 (2008)

    Article  MathSciNet  Google Scholar 

  7. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  8. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Parallel tiled QR factorization for multicore architectures. Concurrency Computat.: Pract. Exper. 20(13), 1573–1590 (2008)

    Article  Google Scholar 

  9. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Computing 35(1), 38–53 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chan, E.: Runtime data flow scheduling of matrix computations. FLAME Working Note #39. Technical Report TR-09-22, The University of Texas at Austin, Department of Computer Sciences (August 2009)

    Google Scholar 

  11. Chan, E., Van Zee, F.G., Bientinesi, P., Quintana-Ortí, E.S., Quintana-Ortí, G., van de Geijn, R.: Supermatrix: a multithreaded runtime scheduling system for algorithms-by-blocks. In: PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, pp. 123–132. ACM, New York (2008)

    Google Scholar 

  12. Christofides, N.: Graph Theory: An algorithmic Approach (1975)

    Google Scholar 

  13. Du Croz, J.J., Higham, N.J.: Stability of methods for matrix inversion. IMA Journal of Numerical Analysis 12, 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the perfect benchmarks®. IEEE Trans. Parallel Distrib. Syst. 9(1), 5–23 (1998)

    Article  Google Scholar 

  15. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  16. Kurzak, J., Dongarra, J.: Fully dynamic scheduler for numerical computing on multicore processors. University of Tennessee CS Tech. Report, UT-CS-09-643 (2009)

    Google Scholar 

  17. Kurzak, J., Dongarra, J.: QR factorization for the Cell Broadband Engine. Sci. Program. 17(1-2), 31–42 (2009)

    Google Scholar 

  18. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based programming environment for multi-core architectures. In: Proceedings of IEEE Cluster Computing 2008 (2008)

    Google Scholar 

  19. Quintana-Ortí, G., Quintana-Ortí, E.S., van de Geijn, R.A., Van Zee, F.G., Chan, E.: Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions on Mathematical Software 36(3)

    Google Scholar 

  20. Rinard, M.C., Scales, D.J., Lam, M.S.: Jade: A high-level, machine-independent language for parallel programming. Computer 6, 28–38 (1993)

    Article  Google Scholar 

  21. Sutter, H.: A fundamental turn toward concurrency in software. Dr. Dobb’s Journal 30(3) (2005)

    Google Scholar 

  22. Wolfe, M.: Doany: Not just another parallel loop. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC 1992. LNCS, vol. 757, pp. 421–433. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  23. Van Zee, F.G.: libflame: The Complete Reference (2009), http://www.lulu.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agullo, E., Bouwmeester, H., Dongarra, J., Kurzak, J., Langou, J., Rosenberg, L. (2011). Towards an Efficient Tile Matrix Inversion of Symmetric Positive Definite Matrices on Multicore Architectures. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds) High Performance Computing for Computational Science – VECPAR 2010. VECPAR 2010. Lecture Notes in Computer Science, vol 6449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19328-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19328-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19327-9

  • Online ISBN: 978-3-642-19328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics