[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Method for Text Localization and Recognition in Real-World Images

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Included in the following conference series:

Abstract

A general method for text localization and recognition in real-world images is presented. The proposed method is novel, as it (i) departs from a strict feed-forward pipeline and replaces it by a hypotheses-verification framework simultaneously processing multiple text line hypotheses, (ii) uses synthetic fonts to train the algorithm eliminating the need for time-consuming acquisition and labeling of real-world training data and (iii) exploits Maximally Stable Extremal Regions (MSERs) which provides robustness to geometric and illumination conditions.

The performance of the method is evaluated on two standard datasets. On the Char74k dataset, a recognition rate of 72% is achieved, 18% higher than the state-of-the-art. The paper is first to report both text detection and recognition results on the standard and rather challenging ICDAR 2003 dataset. The text localization works for number of alphabets and the method is easily adapted to recognition of other scripts, e.g. cyrillics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, V., Manmatha, R., Riseman Sr., E.M.: Textfinder: An automatic system to detect and recognize text in images. IEEE Trans. Pattern Anal. Mach. Intell. (1999)

    Google Scholar 

  2. Chen, X., Yang, J., Zhang, J., Waibel, A.: Automatic Detection and Recognition of Signs From Natural Scenes. IEEE Trans. on Image Processing 13, 87–99 (2004)

    Article  Google Scholar 

  3. Ezaki, N.: Text detection from natural scene images: towards a system for visually impaired persons. In: Int. Conf. on Pattern Recognition, pp. 683–686 (2004)

    Google Scholar 

  4. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: CVPR 2010: Proc. of the 2010 Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  5. Lin, X.: Reliable OCR solution for digital content re-mastering. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2001)

    Google Scholar 

  6. Chen, X., Yuille, A.L.: Detecting and reading text in natural scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 366–373 (2004)

    Google Scholar 

  7. Gao, J., Yang, J.: An adaptive algorithm for text detection from natural scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. 84 (2001)

    Google Scholar 

  8. Jain, A.K., Yu, B.: Automatic text location in images and video frames. In: International Conference on Pattern Recognition, vol. 2, p. 1497 (1998)

    Google Scholar 

  9. Pan, Y.F., Hou, X., Liu, C.L.: A robust system to detect and localize texts in natural scene images. In: IAPR International Workshop on Document Analysis Systems, pp. 35–42 (2008)

    Google Scholar 

  10. Kim, E., Lee, S., Kim, J.: Scene text extraction using focus of mobile camera. In: International Conference on Document Analysis and Recognition, pp. 166–170 (2009)

    Google Scholar 

  11. Pan, Y.F., Hou, X., Liu, C.L.: Text localization in natural scene images based on conditional random field. In: ICDAR 2009: Proc. of the 2009 10th International Conference on Document Analysis and Recognition, pp. 6–10 (2009)

    Google Scholar 

  12. de Campos, T.E., Babu, B.R., Varma, M.: Character recognition in natural images. In: VISAPP, February 05-08 (2009)

    Google Scholar 

  13. Yokobayashi, M., Wakahara, T.: Segmentation and recognition of characters in scene images using selective binarization in color space and gat correlation. In: Proc. of the 8th International Conference on Document Analysis and Recognition, pp. 167–171 (2005)

    Google Scholar 

  14. Weinman, J.J., Learned-Miller, E., Hanson, A.R.: Scene text recognition using similarity and a lexicon with sparse belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1733–1746 (2009)

    Article  Google Scholar 

  15. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22, 761–767 (2004)

    Article  Google Scholar 

  16. Matas, J(G.), Zimmermann, K.: A new class of learnable detectors for categorisation. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 541–550. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. on Neural Networks 12, 181–201 (2001)

    Article  Google Scholar 

  20. Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: Icdar 2003 robust reading competitions. In: ICDAR 2003: Proc. of the 7th International Conference on Document Analysis and Recognition, p. 682 (2003)

    Google Scholar 

  21. Myers, G.K., Bolles, R.C., Luong, Q.T., Herson, J.A., Aradhye, H.: Rectification and recognition of text in 3-d scenes. IJDAR 7, 147–158 (2005)

    Article  Google Scholar 

  22. Liu, C.L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition: investigation of normalization and feature extraction techniques. Pattern Recognition 37, 265–279 (2004)

    Article  MATH  Google Scholar 

  23. Lucas, S.M.: Text locating competition results. In: International Conference on Document Analysis and Recognition, pp. 80–85 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neumann, L., Matas, J. (2011). A Method for Text Localization and Recognition in Real-World Images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics