[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Foreground and Shadow Segmentation Based on a Homography-Correspondence Pair

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Included in the following conference series:

Abstract

A static binocular camera system is widely used in many computer vision applications; and being able to segment foreground, shadow, and background is an important problem for them. In this paper, we propose a homography-correspondence pair-based segmentation framework. Existing segmentation approaches, based on homography constraints, often suffer from occlusion problems. In our approach, we treat a homography-correspondence pair symmetrically, to explicitly take the occlusion relationship into account, and we regard the segmentation problem as a multi-labeling problem for the homography-correspondence pair. We then formulate an energy function for this problem and get the pair-wise segmentation results by minimizing them via an α-β swap algorithm. Experimental results show that accurate segmentation is obtained in the presence of the occlusion region in each side image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  2. Choi, J., Jun, Y., Choi, J.Y.: Adaptive shadow estimator for removing shadow of moving object. Computer Vision and Image Understanding 114, 1017–1029 (2010)

    Article  Google Scholar 

  3. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detection moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 1337–1342 (2003)

    Article  Google Scholar 

  4. Horprasert, T., Harwood, D., Davis, L.S.: A robust background subtraction and shadow detection. In: Proc. of the 4th Asian Conference on Computer Vision, pp. 983–988 (2000)

    Google Scholar 

  5. Huang, J.B., Chen, C.S.: Moving cast shadows detection using physics-based features. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2310–2317 (2009)

    Google Scholar 

  6. Kakuta, T., Vinh, L.B., Kawakami, R., Oishi, T., Ikeuchi, K.: Detection of moving objects and cast shadows using a spherical vision camera for outdoor mixed reality. In: Proc. on 15th ACM Symposium on Virtual Reality Software and Technology, pp. 219–222 (2008)

    Google Scholar 

  7. Porikli, F., Thornton, J.: Shadow flow: A recursive method to learn moving cast shadows. In: Proc. IEEE Int. Conf. on Computer Vision, vol. 1, pp. 891–898 (2005)

    Google Scholar 

  8. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: Algorithms and evaluation. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 918–923 (2003)

    Article  Google Scholar 

  9. Tanaka, T., Shimada, A., Arita, D., Taniguchi, R.-i.: Non-parametric background and shadow modeling for object detection. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 159–168. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Gordon, G., Darrell, T., Harville, M., Woodfill, J.: Background estimation and removal based on range and color. In: Proc. of the 18th Int. Conf. on Pattern Recognition, pp. 459–464 (1999)

    Google Scholar 

  11. Madsen, C.B., Moeslund, T.B., Pal, A., Balasubramanian, S.: Shadow detection in dynamic scenes using dense stereo information and an outdoor illumination model. In: Proc. on the DAGM, Workshop on Dynamic 3D Imaging, pp. 110–125 (2009)

    Google Scholar 

  12. Batavia, P.H., Singh, S.: Obstacle detection using adaptive color segmentation and color stereo homography. In: Proc. of IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 705–710 (2001)

    Google Scholar 

  13. Hamid, R., KrishanKumar, R., Grundmann, M., Kim, K., Essa, I., Hodgins, J.: Player localization using multiple static cameras for sports visualization. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 731–738 (2010)

    Google Scholar 

  14. Jeong, K., Jaynes, C.: Moving shadow detection using a combined geometric and color classification approach. In: Proc IEEE Workshop on Motion and Video Computing 2005, vol. 2, pp. 36–43 (2005)

    Google Scholar 

  15. Kasuya, N., Kitahara, I., Kameda, Y., Ohta, Y.: Robust trajectory estimation of soccer players by using two cameras. In: Proc. of the 19th Int. Conf. on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  16. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: Proc. IEEE Int. Conf. on Computer Vision, pp. 508–515 (2001)

    Google Scholar 

  17. Kolmogorov, V., Zabih, R.: Graph cut algorithms for binocular stereo with occlusions. In: Mathematical Models in Computer Vision: The Handbook, pp. 423–438 (2005)

    Google Scholar 

  18. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  19. Marimont, D.H., Wandell, B.A.: Linear models for surface and illumination spectra. Journal of the Optical Society of America, 1905–1913 (1992)

    Google Scholar 

  20. Sugiura, K., Makihara, Y., Yagi, Y.: Gait identification based on multi-view observations using omnidirectional camera. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 452–461. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Iwashita, Y., Stoica, A.: Gait recognition using shadow analysis. In: 2009 Bio-inspired Learning and Intelligent Systems for Security, pp. 26–31 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwama, H., Makihara, Y., Yagi, Y. (2011). Foreground and Shadow Segmentation Based on a Homography-Correspondence Pair. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics