[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6456))

Abstract

Computational models that attempt to predict when a virtual human should backchannel are often based on the analysis of recordings of face-to-face conversations between humans. Building a model based on a corpus brings with it the problem that people differ in the way they behave. The data provides examples of responses of a single person in a particular context but in the same context another person might not have provided a response. Vice versa, the corpus will contain contexts in which the particular listener recorded did not produce a backchannel response, where another person would have responded. Listeners can differ in the amount, the timing and the type of backchannels they provide to the speaker, because of individual differences - related to personality, gender, or culture, for instance. To gain more insight in this variation we have collected data in which we record the behaviors of three listeners interacting with one speaker. All listeners think they are having a one-on-one conversation with the speaker, while the speaker actually only sees one of the listeners. The context, in this case the speaker’s actions, is for all three listeners the same and they respond to it individually. This way we have created data on cases in which different persons show similar behaviors and cases in which they behave differently. With the recordings of this data collection study we can start building our model of backchannel behavior for virtual humans that takes into account similarities and differences between persons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brugman, H., Russel, A.: Annotating multimedia/multi-modal resources with ELAN. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, Citeseer, pp. 2065–2068 (2004)

    Google Scholar 

  2. Cathcart, N., Carletta, J., Klein, E.: A shallow model of backchannel continuers in spoken dialogue. In: European ACL, pp. 51–58 (2003)

    Google Scholar 

  3. Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 125–138. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Huang, L., Morency, L.-P., Gratch, J.: Parasocial Consensus Sampling: Combining Multiple Perspectives to Learn Virtual Human Behavior. In: Proceedings of Autonomous Agents and Multi-Agent Systems, Toronto, Canada (2010)

    Google Scholar 

  5. Huijbregts, M.: Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled. Phd thesis, University of Twente (2008)

    Google Scholar 

  6. John, O.P., Naumann, L.P., Soto, C.J.: Paradigm shift to the integrative Big-Five trait taxonomy: History, measurement, and conceptual issues, 3rd edn., ch. 4, pp. 114–158. Guilford Press, New York (2008)

    Google Scholar 

  7. Morency, L.P., de Kok, I., Gratch, J.: A probabilistic multimodal approach for predicting listener backchannels. Autonomous Agents and Multi-Agent Systems 20(1), 70–84 (2010)

    Article  Google Scholar 

  8. Noguchi, H., Den, Y.: Prosody-based detection of the context of backchannel responses. In: Fifth International Conference on Spoken Language Processing (1998)

    Google Scholar 

  9. Terry, P.C., Lane, A.M., Fogarty, G.J.: Construct validity of the Profile of Mood States-Adolescents for use with adults. Psychology of Sport and Exercise 4(2), 125–139 (2003)

    Article  Google Scholar 

  10. Ward, N., Tsukahara, W.: Prosodic features which cue back-channel responses in English and Japanese. Journal of Pragmatics 32(8), 1177–1207 (2000)

    Article  Google Scholar 

  11. Watson, D., Clark, L.A.: The PANAS-X (1994)

    Google Scholar 

  12. White, S.: Backchannels across cultures: A study of Americans and Japanese. Language in Society 18(1), 59–76 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Kok, I., Heylen, D. (2011). The MultiLis Corpus – Dealing with Individual Differences in Nonverbal Listening Behavior. In: Esposito, A., Esposito, A.M., Martone, R., Müller, V.C., Scarpetta, G. (eds) Toward Autonomous, Adaptive, and Context-Aware Multimodal Interfaces. Theoretical and Practical Issues. Lecture Notes in Computer Science, vol 6456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18184-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18184-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18183-2

  • Online ISBN: 978-3-642-18184-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics