[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms

  • Conference paper
Internet and Network Economics (WINE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6484))

Included in the following conference series:

Abstract

Constrained submodular maximization problems have long been studied, most recently in the context of auctions and computational advertising, with near-optimal results known under a variety of constraints when the submodular function is monotone. In this paper, we give constant approximation algorithms for the non-monotone case that work for p-independence systems (which generalize constraints given by the intersection of p matroids that had been studied previously), where the running time is \(\text{poly}(n,p)\). Our algorithms and analyses are simple, and essentially reduce non-monotone maximization to multiple runs of the greedy algorithm previously used in the monotone case.

We extend these ideas to give a simple greedy-based constant factor algorithms for non-monotone submodular maximization subject to a knapsack constraint, and for (online) secretary setting (where elements arrive one at a time in random order and the algorithm must make irrevocable decisions) subject to uniform matroid or a partition matroid constraint. Finally, we give an O(logk) approximation in the secretary setting subject to a general matroid constraint of rank k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Correlation robust stochastic optimization. CoRR, abs/0902.1792 (2009)

    Google Scholar 

  2. Asadpour, A., Nazerzadeh, H., Saberi, A.: Stochastic submodular maximization. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 477–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Babaioff, M., Dinitz, M., Gupta, A., Immorlica, N., Talwar, K.: Secretary problems: weights and discounts. In: 19th Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 1245–1254 (2009)

    Google Scholar 

  5. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: SODA 2007, pp. 434–443 (2007)

    Google Scholar 

  6. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular secretary problem and extensions (2010) (manuscript), http://hdl.handle.net/1721.1/51336

  7. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Proceedings, MPS Conference on Integer Programming and Combinatorial Optimization, pp. 182–196 (2007)

    Google Scholar 

  8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. To appear in SICOMP (2009)

    Google Scholar 

  9. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. (electronic) 35(3), 713–728 (2005)

    Google Scholar 

  10. Chekuri, C., Vondrák, J., Zenklusen, R.: Randomized pipage rounding for matroid polytopes and applications. CoRR, abs/0909.4348 (2009); To appear in FOCS 2010

    Google Scholar 

  11. Dimitrov, N.B., Plaxton, C.G.: Competitive weighted matching in transversal matroids. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 397–408. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Dynkin, E.B.: Optimal choice of the stopping moment of a Markov process. Dokl. Akad. Nauk SSSR 150, 238–240 (1963)

    MathSciNet  Google Scholar 

  13. Feige, U., Mirrokni, V., Vondrak, J.: Maximizing non-monotone submodular functions. In: Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS (2007)

    Google Scholar 

  14. Ferguson, T.S.: Who solved the secretary problem? Statistical Science 4, 282–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions. II. Math. Programming Stud. (8), 73–87 (1978); Polyhedral combinatorics

    Google Scholar 

  16. Freeman, P.R.: The secretary problem and its extensions: a review. Internat. Statist. Rev. 51(2), 189–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, A., Nagarajan, V., Ravi, R.: Thresholded covering algorithms for robust and max-min optimization. CoRR, abs/0912.1045 (2009); To appear in ICALP 2010

    Google Scholar 

  18. Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: EC 2004: Proceedings of the 5th ACM Conference on Electronic Commerce, pp. 71–80. ACM, New York (2004)

    Google Scholar 

  19. Hausmann, D., Korte, B., Jenkyns, T.A.: Worst case analysis of greedy type algorithms for independence systems. Math. Programming Stud. (12), 120–131 (1980); Combinatorial optimization

    Google Scholar 

  20. Jenkyns, T.A.: The efficacy of the “greedy” algorithm. In: Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing (Louisiana State Univ., Baton Rouge, La., 1976), pp. 341–350. Congressus Numerantium, No. XVII, Winnipeg, Man, Utilitas Math. (1976)

    Google Scholar 

  21. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM, New York (2003)

    Chapter  Google Scholar 

  22. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inform. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. In: 16th SODA, pp. 630–631. ACM, New York (2005)

    Google Scholar 

  24. Kleinberg, R.D.: A secretary problem with submodular payoff function (2009) (manuscript)

    Google Scholar 

  25. Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann. Discrete Math. 2, 65–74 (1978); Algorithmic aspects of combinatorics Conf., Vancouver Island, B.C. (1976)

    Google Scholar 

  26. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs, pp. 508–520 (2009)

    Google Scholar 

  27. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: SODA 2009: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 545–554 (2009)

    Google Scholar 

  28. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23(4), 2053–2078 (2009/2010); Preliminary versions in STOC 2009 and arXiv:0902.0353

    Google Scholar 

  29. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. In: Proceedings, International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 244–257 (2009)

    Google Scholar 

  30. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, p. 134. ACM, New York (2007)

    Google Scholar 

  31. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. I. Math. Programming 14(3), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings, ACM Symposium on Theory of Computing, pp. 67–74 (2008)

    Google Scholar 

  34. Vondrák, J.: Symmetry and approximability of submodular maximization problems. In: Proceedings, IEEE Symposium on Foundations of Computer Science (2009) (page to appear)

    Google Scholar 

  35. Wolsey, L.A.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Roth, A., Schoenebeck, G., Talwar, K. (2010). Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms. In: Saberi, A. (eds) Internet and Network Economics. WINE 2010. Lecture Notes in Computer Science, vol 6484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17572-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17572-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17571-8

  • Online ISBN: 978-3-642-17572-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics