[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Investment Appraisal under Uncertainty – A Fuzzy Real Options Approach

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

Abstract

The main purpose of this paper is to propose a fuzzy approach for investment project valuation in uncertain environments from the aspect of real options. The traditional approaches to project valuation are based on discounted cash flows (DCF) analysis which provides measures like net present value (NPV) and internal rate of return (IRR). However, DCF-based approaches exhibit two major pitfalls. One is that DCF parameters such as cash flows cannot be estimated precisely in the uncertain decision making environments. The other one is that the values of managerial flexibilities in investment projects cannot be exactly revealed through DCF analysis. Both of them would entail improper results on strategic investment projects valuation. Therefore, this paper proposes a fuzzy binomial approach that can be used in project valuation under uncertainty. The proposed approach also reveals the value of flexibilities embedded in the project. Furthermore, this paper provides a method to compute the mean value of a project’s fuzzy expanded NPV that represents the entire value of project. Finally, we use the approach to practically evaluate a project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Trigeorgis, L.: Real options and interactions with financial flexibility. Financ. Manag. 22, 202–224 (1993)

    Article  Google Scholar 

  2. Yeo, K.T., Qiu, F.: The value of managerial flexibility-a real option approach to investment evaluation. Int. J. Proj. Manag. 21, 243–250 (2003)

    Article  Google Scholar 

  3. Carlsson, C., Fuller, R.: A fuzzy approach to real option valuation. Fuzzy Sets Syst. 139, 297–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Muzzioli, S., Torricelli, C.: A multiperiod binomial model for pricing options in a vague world. J. Econ. Dyn. Control 28, 861–887 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Muzzioli, S., Reynaerts, H.: American option pricing with imprecise risk-neutral probabilities. Int. J. Approx. Reason 49, 140–147 (2008)

    Article  MATH  Google Scholar 

  6. Carlsson, C., Fuller, R., Heikkila, M., Majlender, P.: A fuzzy approach to R&D project portfolio selection. Int. J. Approx. Reason 44, 93–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, H.C.: Pricing European options based on the fuzzy pattern of Black-Scholes formula. Comput. Oper. Res. 31, 1069–1081 (2004)

    Article  MATH  Google Scholar 

  9. Lee, C.F., Tzeng, G.H., Wang, S.Y.: A new application of fuzzy set theory to the Black-Scholes option pricing model. Expert Syst. Appl. 29, 330–342 (2005)

    Article  Google Scholar 

  10. Miller, L., Bertus, M.: License valuation in the aerospace industry: A real options approach. Rev. Financ. Econ. 14, 225–239 (2005)

    Article  Google Scholar 

  11. Cox, J., Ross, S., Rubinstein, M.: Option pricing: A simplified approach. J. Financ. Econ. 7, 229–263 (1979)

    Article  MATH  Google Scholar 

  12. Carlsson, C., Fuller, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122, 315–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fuller, R., Majlender, P.: On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets Syst. 136, 363–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bodjanova, S.: Median value and median interval of a fuzzy number. Inf. Sci. 172, 73–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yoshida, Y., Yasuda, M., Nakagami, J., Kurano, M.: A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty. Fuzzy Sets Syst. 157, 2614–2626 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kahraman, C., Ruan, D., Tolga, E.: Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows. Inf. Sci. 142, 57–76 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, SH., Ho, SH. (2010). Investment Appraisal under Uncertainty – A Fuzzy Real Options Approach. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics