[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Random Projection Tree and Multiview Embedding for Large-Scale Image Retrieval

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

Abstract

Image retrieval on large-scale datasets is challenging. Current indexing schemes, such as k-d tree, suffer from the “curse of dimensionality”. In addition, there is no principled approach to integrate various features that measure multiple views of images, such as color histogram and edge directional histogram. We propose a novel retrieval system that tackles these two problems simultaneously. First, we use random projection trees to index data whose complexity only depends on the low intrinsic dimension of a dataset. Second, we apply a probabilistic multiview embedding algorithm to unify different features. Experiments on MSRA large-scale dataset demonstrate the efficiency and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Petrakis, E.G., Faloutsos, C., Lin, K.I.D.: Imagemap: An image indexing method based on spatial similarity. IEEE Transactions on Knowledge and Data Engineering 14, 979–987 (2002)

    Article  Google Scholar 

  2. Natsev, A., Rastogi, R., Shim, K.: Walrus: A similarity retrieval algorithm for image databases. IEEE Transactions on Knowledge and Data Engineering 16, 301–316 (2004)

    Article  Google Scholar 

  3. Tian, X., Tao, D., Hua, X.S., Wu, X.: Active reranking for web image search. IEEE Transactions on Image Processing 19(3), 805–820 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bian, W., Tao, D.: Biased discriminant euclidean embedding for content-based image retrieval. IEEE Transactions on Image Processing 19(2), 545–554 (2010)

    Article  MathSciNet  Google Scholar 

  5. Song, D., Tao, D.: Biologically inspired feature manifold for scene classification. IEEE Transactions on Image Processing 19(1), 174–184 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  7. Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of manifolds using random projections. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20, pp. 473–480. MIT Press, Cambridge (2008)

    Google Scholar 

  8. Zhou, T., Tao, D., Wu, X.: Manifold elastic net: a unified framework for sparse dimension reduction. Data Mining and Knowledge Discovery, 1–32 (2010)

    Google Scholar 

  9. Si, S., Tao, D., Geng, B.: Bregman divergence based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering 22(7), 929–942 (2010)

    Article  Google Scholar 

  10. Mendis, B.S.U., Gedeon, T.D., Kóczy, L.T.: Flexibility and robustness of hierarchical fuzzy signature structures with perturbed input data. In: International Conference of Information Processing and Management of Uncertainty in Knowledge Based Systems (2006)

    Google Scholar 

  11. Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds. In: STOC 2008: Proceedings of the 40th annual ACM symposium on Theory of computing, pp. 537–546. ACM, New York (2008)

    Google Scholar 

  12. Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems 15, pp. 833–840. MIT Press, Cambridge

    Google Scholar 

  13. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Research 9, 2579–2605 (2008)

    MATH  Google Scholar 

  14. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course (Applied Optimization), 1st edn. Springer, Netherlands

    Google Scholar 

  15. Li, H., Wang, M., Hua, X.S.: Msra-mm 2.0: A large-scale web multimedia dataset. In: IEEE International Conference on Data Mining Workshops, pp. 164–169 (2009)

    Google Scholar 

  16. Long, B., Yu, P.S., Zhang, Z.M.: A general model for multiple view unsupervised learning. In: Proceedings of the SIAM International Conference on Data Mining, Atlanta, Georgia, USA, pp. 822–833. SIAM, Philadelphia (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, B., Mu, Y., Song, M., Tao, D. (2010). Random Projection Tree and Multiview Embedding for Large-Scale Image Retrieval. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics