[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Human Action Recognition by SOM Considering the Probability of Spatio-temporal Features

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

Abstract

In this paper, an action recognition system was invented by proposing a compact 3D descriptor to represent action information, and employing self-organizing map (SOM) to learn and recognize actions. Histogram Of Gradient 3D (HOG3D) performed better among currently used descriptors for action recognition. However, the calculation of the descriptor is quite complex. Furthermore, it used a vector with 960 elements to describe one interest point. Therefore, we proposed a compact descriptor, which shortened the support region of interest points, combined symmetric bins after orientation quantization. In addition, the top value bin of quantized vector was kept instead of setting threshold experimentally. Comparing with HOG3D, our descriptor used 80 bins to describe a point, which reduced much computation complexity. The compact descriptor was used to learn and recognize actions considering the probability of local features in SOM, and the results showed that our system outperformed others both on KTH and Hollywood datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference. Elsevier North-Holland, The Netherlands (1988)

    Google Scholar 

  2. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  3. Laptev, I., Lindeberg, T.: On Space-time interest points. In: 6th IEEE International Conference on Computer Vision, pp. 432–439 (2003)

    Google Scholar 

  4. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Willems, G., Tuytelaars, T., Gool, L.V.: An efficient dense and scaleinvariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. FeiFei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: 15th IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 524–531 (2005)

    Google Scholar 

  7. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: 8th IEEE International Conference on Computer Vision, pp. 604–610 (2005)

    Google Scholar 

  8. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: 18th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  9. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D gradients. In: 19th British Machine Vision Conference, pp. 995–1004. British Machine Vision Association, Worcs (2008)

    Google Scholar 

  10. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: 15th ACM International Conference on Multimedia, pp. 357–360. ACM, New York (2007)

    Google Scholar 

  11. Shimada, A., Taniguchi, R.: Gesture recognition using sparse code of hierarchical SOM. In: 18th International Conference on Pattern Recognition (2008)

    Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  13. Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition using mined dense spatio-temporal features. In: 12th IEEE International Conference on computer Vision (2009)

    Google Scholar 

  14. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: 14th International Conference on Pattern Recognition, pp. 32–36 (2004)

    Google Scholar 

  15. Heng, W., Muhammad, M.U., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: British Machine Vision Conference, pp. 127–137 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, Y., Shimada, A., Taniguchi, Ri. (2010). Human Action Recognition by SOM Considering the Probability of Spatio-temporal Features. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics