[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Connectivity Graphs of Uncertainty Regions

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Abstract

We study a generalization of the well known bottleneck spanning tree problem called Best Case Connectivity with Uncertainty: Given a family of geometric regions, choose one point per region, such that the length of the longest edge in a spanning tree of a disc intersection graph is minimized. We show that this problem is NP-hard even for very simple scenarios such as line segments and squares. We also give exact and approximation algorithms for the case of line segments and unit discs respectively.

The authors are grateful for two Bellairs workshops supporting this research: the 8th and 9th McGill—INRIA Workshop on Computational Geometry in 2009 and 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 56.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Arkin, E., Brönnimann, H., Erickson, J., Fekete, S., Knauer, C., Lenchner, J., Mitchell, J., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: Proc. 22nd ACM Symp. Comp. Geom. (SoCG), pp. 449–458 (2006)

    Google Scholar 

  2. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Disc. Appl. Mathematics 55(3), 197–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chambers, E., Erickson, A., Fekete, S., Lenchner, J., Sember, J., Venkatesh, S., Stege, U., Stolpner, S., Weibel, C., Whitesides, S.: Connectivity graphs of uncertainty regions. arXiV:1009.3469 (2010)

    Google Scholar 

  4. Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in radio networks. Technical Report TR00-054, Electronic Colloquium on Computational Complexity (2000)

    Google Scholar 

  5. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with neighborhoods of varying size. J. Algorithms 57(1), 22–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duchet, P., Hamidoune, Y.O., Vergnas, M.L., Meyniel, H.: Representing a planar graph by vertical lines joining different levels. Disc. Mathematics 46(3), 319–321 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. In: Proc. 12th ACM-SIAM Symp. on Disc. Algorithms (SODA), pp. 38–46 (2001)

    Google Scholar 

  8. Fuchs, B.: On the hardness of range assignment problems. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 127–138. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Gudmundsson, J., Levcopoulos, C.: A fast approximation algorithm for TSP with neighborhoods. Nord. J. Comput. 6(4), 469 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Lev-Tov, N., Peleg, D.: Exact algorithms and approximation schemes for base station placement problems. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 90–99. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)

    Article  MATH  Google Scholar 

  13. Mitchell, J.S.B.: A PTAS for TSP with neighborhoods among fat regions in the plane. In: Proc. 18th ACM-SIAM Symp. on Disc. Algorithms (SODA), pp. 11–18 (2007)

    Google Scholar 

  14. Parker, G., Rardin, R.L.: Guaranteed performance heuristics for the bottleneck traveling salesman problem. Operations Research Letters 2(6), 269–272 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Disc. Comp. Geom. 1, 343–353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, Y., Lin, M., Xu, J., Xie, Y.: Minimum spanning tree with neighborhoods. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chambers, E. et al. (2010). Connectivity Graphs of Uncertainty Regions. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics