[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Onion Diagram: A Voronoi-Like Tessellation of a Planar Line Space and Its Applications

(Extended Abstract)

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

  • 795 Accesses

Abstract

Given a set S of weighted points in the plane, we consider two problems dealing with planar lines in ℝ2 under the weighted Euclidean distance: (1) Preprocess S into a data structure that efficiently finds a nearest point among S of a query “line”. (2) Find an optimal “line” that maximizes the minimum of the weighted distance to any point of S. We introduce a unified approach to both problems based on a new geometric transformation that maps lines in the plane into points in a line space. It turns out that our transformation, together with its target space, well describes the proximity relations between given weighted points S and every planar line in ℝ2. We define a Voronoi-like tessellation on the line space and investigate its geometric, combinatorial, and computational properties. As its applications, we obtain several new results on the two problems.

This work is dedicated to our advisor, Professor Kyung-Yong Chwa, on the occasion of his honorable retirement.

Work by S.W.Bae was supported by National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2010-0005974). Work by C.-S.Shin was supported by National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2010-0016416), and the HUFS Research Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 56.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aurenhammer, F.: The one-dimensional weighted Voronoi diagram. Inf. Process. Lett. 22(3), 119–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, D.Z., Wang, H.: Locating an obnoxious line among planar objects. In: Proc. 20th Int. Sympos. Algo. Comput. (ISAAC), pp. 740–749 (2009)

    Google Scholar 

  4. Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cole, R., Yap, C.: Geometric retrieval problems. In: Proc. 24th IEEE Sympos. Foundation of Computer Science (FOCS), pp. 112–121 (1983)

    Google Scholar 

  6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  7. Díaz-Báñez, J.M., Ramos, P.A., Sabariego, P.: The maximin line problem with regional demand. European Journal of Operational Research 181(1), 20–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drezner, Z., Wesolowsky, G.: Location of an obnoxious route. Journal of Operational Research Society 40(11), 1011–1018 (1989)

    Article  MATH  Google Scholar 

  9. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hershberger, J.: Finding the upper envelope of n line segments in o(n logn) time. Inf. Process. Lett. 33(4), 169–174 (1989)

    Article  MATH  Google Scholar 

  11. Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic J. of Computing 1(2), 231–245 (1994)

    MathSciNet  Google Scholar 

  12. Lee, D., Chiang, Y.: The power of geometric duality revisited. Inform. Process Lett. 21, 117–122 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nandy, S.C., Das, S., Goswami, P.P.: An efficient k nearest neighbors searching algorithm for a query line. Theoretical Computer Science 299, 273–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  15. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  16. van Oostrum, R., Veltkamp, R.C.: Parametric search made practical. Comput. Geom: Theory and Appl. 28, 75–88 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, S.W., Shin, CS. (2010). The Onion Diagram: A Voronoi-Like Tessellation of a Planar Line Space and Its Applications. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics