[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Coverage with k-Transmitters in the Presence of Obstacles

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2010)

Abstract

For a fixed integer k ≥ 0, a k-transmitter is an omnidirectional wireless transmitter with an infinite broadcast range that is able to penetrate up to k “walls”, represented as line segments in the plane. We develop lower and upper bounds for the number of k-transmitters that are necessary and sufficient to cover a given collection of line segments, polygonal chains and polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Aurenhammer, F., Hurtado, F., Ramos, P., Urrutia, J.: k-convex polygons. In: EuroCG, pp. 117–120 (2009)

    Google Scholar 

  2. Aichholzer, O., Fabila-Monroy, R., Flores-Pealoza, D., Hackl, T., Huemer, C., Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. In: EuroCG (2009)

    Google Scholar 

  3. Borodin, O.: A new proof of the 6 color theorem. Journal of Graph Theory 19(4), 507–521 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christ, T., Hoffmann, M., Okamoto, Y., Uno, T.: Improved bounds for wireless localization. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 77–89. Springer, Heidelberg (2008)

    Google Scholar 

  5. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial Theory Series B 18, 39–41 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., Zaks, J.: Guarding rectangular art galleries. Discrete Applied Math. 50, 149–157 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Damian, M., Flatland, R., O’Rourke, J., Ramaswami, S.: A new lower bound on guard placement for wireless localization. In: Proc. of the 17th Fall Workshop on Computational Geometry, FWCG 2007, pp. 21–24 (November 2007)

    Google Scholar 

  8. Dean, A.M., Evans, W., Gethner, E., Laison, J., Safari, M.A., Trotter, W.T.: Bar k-visibility graphs: Bounds on the number of edges, chromatic number, and thickness. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 73–82. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard placement for efficient point-in-polygon proofs. In: SoCG, pp. 27–36 (2007)

    Google Scholar 

  10. Fabila-Monroy, R., Vargas, A.R., Urrutia, J.: On modem illumination problems. In: XIII Encuentros de Geometria Computacional, Zaragoza, Spain (June 2009)

    Google Scholar 

  11. Felsner, S., Massow, M.: Parameters of bar k-visibility graphs. Journal of Graph Algorithms and Applications 12(1), 5–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fulek, R., Holmsen, A.F., Pach, J.: Intersecting convex sets by rays. Discrete Comput. Geom. 42(3), 343–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartke, S.G., Vandenbussche, J., Wenger, P.: Further results on bar k-visibility graphs. SIAM Journal of Discrete Mathematics 21(2), 523–531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theor. 32(2), 276–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Inc., New York (1987)

    MATH  Google Scholar 

  16. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ballinger, B. et al. (2010). Coverage with k-Transmitters in the Presence of Obstacles. In: Wu, W., Daescu, O. (eds) Combinatorial Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science, vol 6509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17461-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17461-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17460-5

  • Online ISBN: 978-3-642-17461-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics