Abstract
For a fixed integer k ≥ 0, a k-transmitter is an omnidirectional wireless transmitter with an infinite broadcast range that is able to penetrate up to k “walls”, represented as line segments in the plane. We develop lower and upper bounds for the number of k-transmitters that are necessary and sufficient to cover a given collection of line segments, polygonal chains and polygons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aichholzer, O., Aurenhammer, F., Hurtado, F., Ramos, P., Urrutia, J.: k-convex polygons. In: EuroCG, pp. 117–120 (2009)
Aichholzer, O., Fabila-Monroy, R., Flores-Pealoza, D., Hackl, T., Huemer, C., Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. In: EuroCG (2009)
Borodin, O.: A new proof of the 6 color theorem. Journal of Graph Theory 19(4), 507–521 (1995)
Christ, T., Hoffmann, M., Okamoto, Y., Uno, T.: Improved bounds for wireless localization. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 77–89. Springer, Heidelberg (2008)
Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial Theory Series B 18, 39–41 (1975)
Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., Zaks, J.: Guarding rectangular art galleries. Discrete Applied Math. 50, 149–157 (1994)
Damian, M., Flatland, R., O’Rourke, J., Ramaswami, S.: A new lower bound on guard placement for wireless localization. In: Proc. of the 17th Fall Workshop on Computational Geometry, FWCG 2007, pp. 21–24 (November 2007)
Dean, A.M., Evans, W., Gethner, E., Laison, J., Safari, M.A., Trotter, W.T.: Bar k-visibility graphs: Bounds on the number of edges, chromatic number, and thickness. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 73–82. Springer, Heidelberg (2005)
Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard placement for efficient point-in-polygon proofs. In: SoCG, pp. 27–36 (2007)
Fabila-Monroy, R., Vargas, A.R., Urrutia, J.: On modem illumination problems. In: XIII Encuentros de Geometria Computacional, Zaragoza, Spain (June 2009)
Felsner, S., Massow, M.: Parameters of bar k-visibility graphs. Journal of Graph Algorithms and Applications 12(1), 5–27 (2008)
Fulek, R., Holmsen, A.F., Pach, J.: Intersecting convex sets by rays. Discrete Comput. Geom. 42(3), 343–358 (2009)
Hartke, S.G., Vandenbussche, J., Wenger, P.: Further results on bar k-visibility graphs. SIAM Journal of Discrete Mathematics 21(2), 523–531 (2007)
Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theor. 32(2), 276–282 (1986)
O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Inc., New York (1987)
Urrutia, J.: Art gallery and illumination problems. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ballinger, B. et al. (2010). Coverage with k-Transmitters in the Presence of Obstacles. In: Wu, W., Daescu, O. (eds) Combinatorial Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science, vol 6509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17461-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-17461-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17460-5
Online ISBN: 978-3-642-17461-2
eBook Packages: Computer ScienceComputer Science (R0)