[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolutionary Optimization of Catalysts Assisted by Neural-Network Learning

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

Abstract

This paper presents an important real-world application of both evolutionary computation and learning, an application to the search for optimal catalytic materials. In this area, evolutionary and especially genetic algorithms are encountered most frequently. However, their application is far from any standard methodology, due to problems with mixed optimization and constraints. The paper describes how these difficulties are dealt with in the evolutionary optimization system GENACAT, recently developed for searching optimal catalysts. It also recalls that the costly evaluation of objective functions in this application area can be tackled through learning suitable regression models of those functions, called surrogate models. Ongoing integration of neural-networks-based surrogate modelling with GENACAT is illustrated on two brief examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baerns, M., Holeňa, M.: Combinatorial Development of Solid Catalytic Materials. Design of High-Throughput Experiments, Data Analysis, Data Mining. World Scientific, Singapore (2009)

    Google Scholar 

  2. Holeňa, M., Cukic, T., Rodemerck, U., Linke, D.: Optimization of catalysts using specific, description based genetic algorithms. Journal of Chemical Information and Modeling 48, 274–282 (2008)

    Article  MATH  Google Scholar 

  3. Büche, D., Schraudolph, N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 35, 183–194 (2005)

    Article  Google Scholar 

  4. Jin, Y.: A comprehensive survery of fitness approximation in evolutionary computation. Soft Computing 9, 3–12 (2005)

    Article  Google Scholar 

  5. Ulmer, H., Streichert, F., Zell, A.: Model assisted evolution strategies. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 333–355. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Zhou, Z., Ong, Y., Nair, P., Keane, A., Lum, K.: Combining global and local surrogate models to accellerate evolutionary optimization. IEEE Transactions on Systems, Man and Cybernetics. Part C: Applications and Reviews 37, 66–76 (2007)

    Article  Google Scholar 

  7. Baumes, L., Farrusseng, D., Lengliz, M., Mirodatos, C.: Using artificial neural networks to boost high-throughput discovery in heterogeneous catalysis. QSAR and Combinatorial Science 23, 767–778 (2004)

    Article  Google Scholar 

  8. Farrusseng, D., Clerc, F., Mirodatos, C., Azam, N., Gilardoni, F., Thybaut, J., Balasubramaniam, P., Marin, G.: Development of an integrated informatics toolbox: HT kinetic and virtual screening. Combinatorial Chemistry and High Throughput Screening 10, 85–97 (2007)

    Article  Google Scholar 

  9. Valero, S., Argente, E., Botti, V., Serra, J., Serna, P., Moliner, M., Corma, A.: DoE framework for catalyst development based on soft computing techniques. Computers and Chemical Engineering 33, 225–238 (2009)

    Article  Google Scholar 

  10. Holeňa, M., Linke, D., Rodemerck, U., Bajer, L.: Neural networks as surrogate models for measurements in optimization algorithms. In: Al-Begain, K., Fiems, D., Knottenbelt, W. (eds.) Analytical and Stochastic Modeling Techniques and Applications. LNCS, vol. 6148, pp. 351–366. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Baumes, L., Blanché, A., Serna, P., Tchougang, A., Lachiche, N., Collet, P., Corma, A.: Using genetic programming for advanced performance assessment of industrially relevant heterogeneous catalysts. Materials and Manufacturing Processes 24, 282–292 (2009)

    Article  Google Scholar 

  12. Wolf, D., Buyevskaya, O., Baerns, M.: An evolutionary approach in the combinatorial selection and optimization of catalytic materials. Applied Catalyst A: General 200, 63–77 (2000)

    Article  Google Scholar 

  13. Ohrenberg, A., Törne, C., Schuppert, A., Knab, B.: Application of data mining and evolutionary optimization in catalyst discovery and high-throughput experimentation – techniques, strategies, and software. QSAR and Combinatorial Science 24, 29–37 (2005)

    Article  Google Scholar 

  14. Pereira, R., Clerc, F., Farrusseng, D., Waal, J., Maschmeyer, T.: Effect of genetic algorithm parameters on the optimization of heterogeneous catalysts. QSAR and Combinatorial Science 24, 45–57 (2005)

    Article  Google Scholar 

  15. Leary, S., Bhaskar, A., Keane, A.: A derivative based surrogate model for approximating and optimizing the output of an expensive computer simulation. Journal of Global Optimization 30, 39–58 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ong, Y., Nair, P., Keane, A., Wong, K.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 307–331. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Hosder, S., Watson, L., Grossman, B.: Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport. Optimization and Engineering 2, 431–452 (2001)

    Article  MATH  Google Scholar 

  18. Holeňa, M., Linke, D., Steinfeldt, N.: Boosted neural networks in evolutionary computation. In: Chan, J.H. (ed.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 131–140. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Möhmel, S., Steinfeldt, N., Endgelschalt, S., Holeňa, M., Kolf, S., Dingerdissen, U., Wolf, D., Weber, R., Bewersdorf, M.: New catalytic materials for the high-temperature synthesis of hydrocyanic acid from methane and ammonia by high-throughput approach. Applied Catalysis A: General 334, 73–83 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holeňa, M., Linke, D., Rodemerck, U. (2010). Evolutionary Optimization of Catalysts Assisted by Neural-Network Learning. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics