[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Mobile-Oriented Hand Segmentation Algorithm Based on Fuzzy Multiscale Aggregation

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

We present a fuzzy multiscale segmentation algorithm aimed at hand images acquired by a mobile device, for biometric purposes. This algorithm is quasi-linear with the size of the image and introduces a stopping criterion that takes into account the texture of the regions and controls the level of coarsening. The algorithm yields promising results in terms of accuracy segmentation, having been compared to other well-known methods. Furthermore, its procedure is suitable for a posterior mobile implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, Y., Xu, X.: Revolutionary Information System Application in Biometrics. In: International Conference on Networking and Digital Society, ICNDS 2009, May 30-31, vol. 1, pp. 297–300 (2009)

    Google Scholar 

  2. Fong, L.L., Seng, W.C.: A Comparison Study on Hand Recognition Approaches. In: International Conference of Soft Computing and Pattern Recognition, SOCPAR 2009, December 4-7, pp. 364–368 (2009)

    Google Scholar 

  3. Shirakawa, S., Nagao, T.: Evolutionary image segmentation based on multiobjective clustering. In: IEEE Congress on Evolutionary Computation, CEC 2009, May 18-21, pp. 2466–2473 (2009)

    Google Scholar 

  4. Kang, W.-X., Yang, Q.-Q., Liang, R.-P.: The Comparative Research on Image Segmentation Algorithms. In: First International Workshop on Education Technology and Computer Science, ETCS 2009, March 7-8, vol. 2, pp. 703–707 (2009)

    Google Scholar 

  5. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Macmillan Publishing Ltd., Basingstoke (2006)

    Book  Google Scholar 

  6. Son, T.T., Mita, S., Takeuchi, A.: Road detection using segmentation by weighted aggregation based on visual information and a posteriori probability of road regions. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, October 12-15, pp. 3018–3025 (2008)

    Google Scholar 

  7. Sharon, E., Brandt, A., Basri, R.: Fast multiscale image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, Proceedings, vol. 1, pp. 70–77 (2000)

    Google Scholar 

  8. Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-469 – I-476 (2001)

    Google Scholar 

  9. Rory Tait Neilson, B.N., McDonald, S.: Image segmentation by weighted aggregation with gradient orientation histograms. In: Southern African Telecommunication Networks and Applications Conference, SATNAC (2007)

    Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Computer Vision 59, 167–181 (2004)

    Article  MATH  Google Scholar 

  11. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (June 2007)

    Google Scholar 

  12. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  13. Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

  14. Dyer, R., Zhang, H., Möller, T.: Delaunay mesh construction. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP 2007, Aire-la-Ville, Switzerland, pp. 273–282. Eurographics Association (2007)

    Google Scholar 

  15. Vassili, V.V., Sazonov, V., Andreeva, A.: A survey on pixel-based skin color detection techniques. In: Proc. Graphicon 2003, pp. 85–92 (2003)

    Google Scholar 

  16. Hunter, R.S.: Photoelectric Color-Difference Meter. Proceedings of the Winter Meeting of the Optical Society of America, JOSA 38(7), 661 (1948)

    Google Scholar 

  17. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn., Springer, Heidelberg (April 2008)

    Google Scholar 

  18. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston (1992)

    Google Scholar 

  19. Meirav, G., Eitan, S., Basri, R., Brandt, A.: Texture segmentation by multiscale aggregation of filter responses and shape elements. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, Washington, DC, USA, p. 716. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  20. Xiao, Q., Zhang, N., Gao, S., Li, F., Gao, Y.: Segmentation based on shape prior and graph model optimization. In: 2nd International Conference on Advanced Computer Control (ICACC), March 27-29, vol. 3, pp. 405–408 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Casarrubios Muñoz, Á., Sánchez Ávila, C., de Santos Sierra, A., Guerra Casanova, J. (2010). A Mobile-Oriented Hand Segmentation Algorithm Based on Fuzzy Multiscale Aggregation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics