[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Object Category Classification Using Occluding Contours

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

  • 1818 Accesses

Abstract

Occluding contour (OC) plays important roles in many computer vision tasks. The study of using OC for visual inference tasks is however limited, partially due to the lack of robust OC acquisition technologies. In this work, benefit from a novel OC computation system, we propose applying OC information to category classification tasks. Specifically, given an image and its estimated occluding contours, we first compute a distance map with regard to the OCs. This map is then used to filter out distracting information in the image. The results are combined with standard recognition methods, bag-of-visual-words in our experiments, for category classification. In addition to the approach, we also present two OC datasets, which to the best of our knowledge are the first publicly available ones. The proposed method is evaluated on both datasets for category classification tasks. In all experiments, the proposed method significantly improves classification performances by about 10 percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maire, M., Arbelaez, P., Fowlkes, C., Malik, J.: Using contours to detect and localize junctions in natural images. In: CVPR (2008)

    Google Scholar 

  2. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. (2004)

    Google Scholar 

  3. Lee, Y.J., Grauman, K.: Shape discovery from unlabeled image collections. In: CVPR (2009)

    Google Scholar 

  4. Biederman, I., Ju, G.: Surface vs. edge-based determinants of visual recognition. Cognitive Psychology 20, 38–64 (1988)

    Article  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–714 (1986)

    Article  Google Scholar 

  6. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  7. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 36–51 (2008)

    Article  Google Scholar 

  8. Forsyth, D.: Computer Vision - A Modern Approach. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  9. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology (2007)

    Google Scholar 

  10. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR (2005)

    Google Scholar 

  11. Huertas, A., Nevatia, R.: Detecting buildings in aerial images. Comput. Vision Graph. Image Process. 41(2), 131–152 (1988)

    Article  Google Scholar 

  12. Irvin, R., Mckeown, D.: Methods for exploiting the relationship between buildings and their shadows in aerial imagery, vol. 19, pp. 1564–1575 (1989)

    Google Scholar 

  13. Lin, C., Nevatia, R.: Building detection and description from a single intensity image. Comput. Vis. Image Underst. 72(2), 101–121 (1998)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Lu, C., Latecki, L.J., Adluru, N., Yang, X., Ling, H.: Shape guided contour grouping with particle filters. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, ICCV (2009)

    Google Scholar 

  16. Maji, S., Malik, J.: Object detection using a max-margin hough transform. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR (2009)

    Google Scholar 

  17. Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.): Toward Category-Level Object Recognition. LNCS, vol. 4170. Springer, Heidelberg (2006)

    Google Scholar 

  18. Raskar, R., han Tan, K., Feris, R., Yu, J., Turk, M.: Non-photorealistic camera: depth edge detection and stylized rendering using multi-flash imaging. ACM Transactions on Graphics 23, 679–688 (2004)

    Article  Google Scholar 

  19. Savarese, S., Rushmeier, H., Bernardini, F., Perona, P.: Shadow carving. In: IEEE International Conference on Computer Vision, vol. 1, p. 190 (2001)

    Google Scholar 

  20. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: ICCV, pp. 503–510 (2005)

    Google Scholar 

  21. Willamowski, J., Arregui, D., Csurka, G., Dance, C., Fan, L.: Categorizing nine visual classes using local appearance descriptors

    Google Scholar 

  22. Xie, N., Ling, H., Hu, W., Zhang, X.: Use Bin-Ratio Information for Category and Scene Classification. In: CVPR (2010)

    Google Scholar 

  23. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J., Thorpe, C., Xie, N., Yu, J., Ling, H. (2010). Object Category Classification Using Occluding Contours. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics