[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Facial Fraud Discrimination Using Detection and Classification

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6455))

Included in the following conference series:

Abstract

This paper proposes facial fraud discrimination using facial feature detection and classification based on the AdaBoost and a neural network. The proposed method detects the face, the two eyes, and the mouth by the AdaBoost detector. To classify detection results as either normal or abnormal eyes and mouths, we use a neural network. Using these results, we calculate the fraction of face images that contain normal eyes and mouths. These fractions are used for facial fraud detection by setting a threshold based on the cumulative density function of the Binomial distribution. The FRR and FAR of eye discrimination of our algorithm are 0.0486 and 0.0152, respectively. The FRR and FAR of mouth discrimination of our algorithm are 0.0702 and 0.0299, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Financial success for biometrics? Biometric Technology Today (2005)

    Google Scholar 

  2. Dong, W., Soh, Y.: Image-based fraud detection in automatic teller machine. International Journal of Computer Science and Network Security 6, 13–18 (2006)

    Google Scholar 

  3. Lin, D., Liu, M.: Face occlusion detection for automated teller machine surveillance. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006. LNCS, vol. 4319, pp. 641–651. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Freund, Y., Schapire, R.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)

    Google Scholar 

  5. Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 91–96 (2004)

    Google Scholar 

  6. Jun, B., Kim, D.: Robust real-time face detection using face certainty map. In: Proceedings of 2nd International Conference on Biometrics, pp. 29–38 (2007)

    Google Scholar 

  7. Choi, I., Kim, D.: Eye correction using correlation information. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 698–707. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Je, H., Kim, S., Jun, B., Kim, D., Kim, H., Sung, J., Bang, S.: Asian Face Image Database PF01. Database, Intelligent Multimedia Lab, Dept. of CSE, POSTECH (2001)

    Google Scholar 

  10. Lee, H., Park, S., Kang, B., Shin, J., Lee, J., Je, H., Jun, B., Kim, D.: The postech face database (pf07) and performance evaluation. In: Proceeding of 8th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1–6 (2009)

    Google Scholar 

  11. Martinez, A., Benavente, R.: The AR Face Database. CVC Technical Report #24 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, I., Kim, D. (2010). Facial Fraud Discrimination Using Detection and Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics