[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Case Study of Parameter Control in a Genetic Algorithm: Computer Network Performance

  • Conference paper
Mobile Lightweight Wireless Systems (Mobilight 2010)

Abstract

Genetic Algorithms use different parameters to control their evolutionary search for the solution to problems. However, there are no standard rules for choosing the best parameter values, being difficult to know whether the parameter values must be fixed during a run or must be modified dynamically. Besides, there are many theoretical results on parameter control, but however, very often real world problems call for shortcuts and/or some ad hoc solutions. This paper presents an effective approach for optimization of control parameters which is based on a meta-GA combined with an adaptation strategy to improve the GA performance. In order to validate the approach, it has been applied to verify the performance of a real system: a computer network. The results have been compared with the ones obtained for other methods: using fixed and adapted parameter values. A statistical analysis has been done to ascertain whether differences are significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E.: Genetic Algorithms in search, optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  2. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary tuning and learning of fuzzy knowledge bases. Advances in fuzzy systems – Applications and theory, vol. 19. World Scientific Publishing, Singapore (2001)

    MATH  Google Scholar 

  3. Herrera, F., Lozano, M.: Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions. Soft Computing 7, 545–562 (2003)

    Article  Google Scholar 

  4. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)

    Article  Google Scholar 

  5. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in Evolutionary Algorithms. In: Parameter Setting in Evolutionary Algorithms. Springer, Heidelberg (2007)

    Google Scholar 

  6. De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)

    Google Scholar 

  7. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)

    Article  Google Scholar 

  8. Bramlette, M.F.: Initialization, mutation and selection methods in genetic algorithms for function optimization. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 100–107. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)

    Article  Google Scholar 

  10. Cicirello, V.A., Smith, S.F.: Modeling GA performance for control parameter optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 235–242. Morgan Kaufmann Publishers, Las Vegas (2000)

    Google Scholar 

  11. Michalewicz, Z., Schmidt, M.: Parameter Control in Practice. In: Parameter Setting in Evolutionary Algorithms. Springer, Heidelberg (2007)

    Google Scholar 

  12. Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  13. Hinterding, R., Michalewicz, Z., Eiben, G.: Adaptation in Evolutionary Computation: A Survey. In: Proc. of the IEEE Conference on Evolutionary Computation, pp. 65–69 (1997)

    Google Scholar 

  14. De Jong, K.: Parameter Setting in EAs: a 30 year Perspective. Parameter Setting in Evolutionary Algorithms. Springer, Heidelberg (2007)

    Google Scholar 

  15. Hui, J.: Switching and Traffic Theory for Integrated Broad Band Networks. Kluwer Academic Publisher, Dordrecht (1990)

    Book  Google Scholar 

  16. Karagiannis, T., Molle, M., Faloutsos, Broido, A.: A nonstationary poisson view of internet traffic. Proc. of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Hong Kong, vol. 3, pp. 1558–1569 (2004)

    Google Scholar 

  17. Cao, J., Cleveland, W., Lin, D., Sun, D.: Internet traffic Tends Toward Poisson and Independent as the Load Increases. In: Holmes, C., Dennison, D., Hansen, M., Yu, B., Mallick, B. (eds.) Nonlinear Estimation and Classification 2002. LNS, pp. 83–109. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Corne, D.W., Oates, M.J., Smith, G.D.: Telecommunications Optimization: Heuristic and Adaptive Techniques. John Wiley and Sons Ltd., Chichester (2000)

    Google Scholar 

  19. Karthik, S., Jawajar, V., Chidambararajan, B., Srivatsa, S.K.: Performance of TCP over satellite networks under severe cross-traffic using GA. International Journal Mobile Communications 2(4), 382–394 (2004)

    Article  Google Scholar 

  20. The Network Simulator -ns-2, http://www.isi.edu/nsnam/ns

  21. Fernández-Prieto, J.A., Velasco, J.R.: Application of Genetic Algorithms in the research of the optimum probabilities of the genetic operators. In: 8th International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU), pp. 291–297 (2000)

    Google Scholar 

  22. GAlib, http://lancet.mit.edu/ga

  23. Herrera, F., Lozano, M., Verdegay, J.L.: The Use of Fuzzy Connectives to Design Real-Coded Genetic Algorithms. Mathware and Soft Computing 1(3), 239–251 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Fernández-Prieto, J.A., Canada-Bago, J., Gadeo-Martos, M.A., Velasco, J.R. (2010). A Case Study of Parameter Control in a Genetic Algorithm: Computer Network Performance. In: Chatzimisios, P., Verikoukis, C., Santamaría, I., Laddomada, M., Hoffmann, O. (eds) Mobile Lightweight Wireless Systems. Mobilight 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16644-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16644-0_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16643-3

  • Online ISBN: 978-3-642-16644-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics