Abstract
In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcalde, C., Burusco, A., Fuentes-González, R.: A constructive method for the definition of interval-valued fuzzy implication operators. Fuzzy Sets and Systems 153, 211–227 (2005)
Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. application to approximate reasoning based on interval-valued fuzzy sets. International Journal of Approximate Reasoning 23, 137–209 (2000)
Chang, C.: Algebraic analysis of many valued logics. Transactions of the American Mathematical Society 88(2), 467–490 (1958)
Chang, C.: A new proof of the completeness of the lukasiewicz axioms. Transactions of the American Mathematical Society 93(1), 74–80 (1959)
Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing 4, 106–112 (2000)
Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., Noguera, C.: Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. Annals of Pure and Applied Logic 160(1), 53–81 (2009)
Cornelis, C., Deschrijver, G., Kerre, E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. International Journal of Approximate Reasoning 35, 55–95 (2004)
Cornelis, C., Deschrijver, G., Kerre, E.: Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets and Systems 157(5), 622–627 (2006)
Deschrijver, G.: The Łukasiewicz t-norm in interval-valued fuzzy and intuitionistic fuzzy set theory. In: Atanassov, K.T., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics, Akademicka Oficyna Wydawnicza EXIT, pp. 83–101 (2005)
Deschrijver, G., Cornelis, C., Kerre, E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Transactions on Fuzzy Systems 12, 45–61 (2004)
Deschrijver, G., Kerre, E.: Classes of intuitionistic fuzzy t-norms satisfying the residuation principle. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, 691–709 (2003)
Dubois, D.: On ignorance and contradiction considered as truth values. Personal communication (2006)
Dubois, D., Prade, H.: Can we enforce full compositionality in uncertainty calculi? In: Proceedings of the 11th National Conference on Artificial Intelligence (AAAI 1994), Seattle, Washington, pp. 149–154 (1994)
Dummett, M.: A propositional calculus with denumerable matrix. The Journal of Symbolic Logic 24(2), 97–106 (1959)
Esteva, F., Garcia-Calvés, P., Godo, L.: Enriched interval bilattices and partial many-valued logics: an approach to deal with graded truth and imprecision. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2(1), 37–54 (1994)
Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)
Esteva, F., Godo, L., Garcia-Cerdaña, A.: On the hierarchy of t-norm based residuated fuzzy logics. In: Fitting, M., Orlowska, E. (eds.) Beyond Two: Theory and Applications of Multiple Valued Logic, pp. 251–272. Physica-Verlag, Heidelberg (2003)
Font, J.: Beyond rasiowa’s algebraic approach to non-classical logics. Studia Logica. 82(2), 172–209 (2006)
Font, J., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic. Studia Logica. 74, 13–79 (2003)
Font, J., Rodriguez, A., Torrens, A.: Wajsberg algebras. Stochastica 8, 5–31 (1984)
Gehrke, M., Walker, C., Walker, E.: Some comments on interval-valued fuzzy sets. International Journal of Intelligent Systems 11, 751–759 (1996)
Gödel, K.: Zum intuitionistischen aussagenkalkül. In: Anzeiger der Akademie der Wissenschaften in Wien, pp. 65–66 (1932)
Gottwald, S.: Mathematical fuzzy logic as a tool for the treatment of vague information. Information Sciences 172, 41–71 (2005)
Hájek, P.: Metamathematics of Fuzzy Logic. In: Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht (1998)
Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der preuszischen Akademie der Wissenschaften, physikalisch-mathematische Klasse, 42–56, 57–71, 158–169 (1930)
Höhle, U.: Commutative, residuated l-monoids. In: Höhle, U., Klement, E. (eds.) Non-classical Logics and their Applications to Fuzzy Subsets: a Handbook of the Mathematical Foundations of Fuzzy Set Theory, pp. 53–106. Kluwer Academic Publishers, Dordrecht (1995)
Huntington, E.: Sets of independent postulates for the algebra of logic. Transactions of the American Mathematical Society 5, 288–309 (1904)
Jenei, S.: A more efficient method for defining fuzzy connectives. Fuzzy Sets and Systems 90, 25–35 (1997)
Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica. 70, 1–10 (2002)
Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, 1–21 (1930)
Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi, part I. Osaka Mathematical Journal 9, 113–130 (1957)
Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi, part II. Osaka Mathematical Journal 11, 115–120 (1959)
Rasiowa, H.: An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics 78 (1974)
Shoenfield, J.: Mathematical Logic. Addison-Wesley, Reading (1967)
Turunen, E.: Mathematics behind Fuzzy Logic. Physica-Verlag, Heidelberg (1999)
Van Gasse, B.: Interval-valued algebras and fuzzy logics. Ph. D. Thesis, Ghent University, Belgium (2010)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.: Filters of residuated lattices and triangle algebras. Information Sciences 180(16), 3006–3020 (2010)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.: The standard completeness of interval-valued monoidal t-norm based logic (submitted)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.: Triangle algebras: towards an axiomatization of interval-valued residuated lattices. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 117–126. Springer, Heidelberg (2006)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.: A characterization of interval-valued residuated lattices. International Journal of Approximate Reasoning 49, 478–487 (2008)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.: Triangle algebras: A formal logic approach to interval-valued residuated lattices. Fuzzy Sets and Systems 159, 1042–1060 (2008)
Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.: The pseudo-linear semantics of interval-valued fuzzy logics. Information Sciences 179, 717–728 (2009)
Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning - i. Information Sciences 8, 199–249 (1975)
Zalta, E.: Basic concepts in modal logic (1995), http://mally.stanford.edu/notes.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Van Gasse, B., Cornelis, C., Deschrijver, G. (2010). Interval-Valued Algebras and Fuzzy Logics. In: Cornelis, C., Deschrijver, G., Nachtegael, M., Schockaert, S., Shi, Y. (eds) 35 Years of Fuzzy Set Theory. Studies in Fuzziness and Soft Computing, vol 261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16629-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-16629-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16628-0
Online ISBN: 978-3-642-16629-7
eBook Packages: EngineeringEngineering (R0)