[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing Learning Algorithms in Automated Assume-Guarantee Reasoning

  • Conference paper
Leveraging Applications of Formal Methods, Verification, and Validation (ISoLA 2010)

Abstract

We compare two learning algorithms for generating contextual assumptions in automated assume-guarantee reasoning. The CDNF algorithm implicitly represents contextual assumptions by a conjunction of DNF formulae, while the OBDD learning algorithm uses ordered binary decision diagrams as its representation. Using these learning algorithms, the performance of assume-guarantee reasoning is compared with monolithic interpolation-based Model Checking in parametrized hardware test cases.

This research was sponsored by the GSRC under contract no. 1041377 (Princeton University), National Science Foundation under contracts no. CCF0429120, no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semiconductor Research Corporation under contract no. 2005TJ1366, General Motors under contract no. GMCMUCRLNV301, Air Force (Vanderbilt University) under contract no. 18727S3, the Office of Naval Research under award no. N000141010188, the National Science Council of Taiwan projects no. NSC97-2221-E-001-003-MY3, no. NSC97-2221-E-001-006-MY3, no. NSC97-2221-E-002-074-MY3, and no. NSC99-2218-E-001-002-MY3, Natural Sciences and Engineering Research Council of Canada NSERC Discovery Award, Chinese National 973 Plan under grant no. 2010CB328003, the NSF of China under grants no. 60635020, 60903030 and 90718039, the FORMES Project within LIAMA Consortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE Transaction on Computers C-35(8) (1986)

    Google Scholar 

  3. Bshouty, N.H.: Exact learning boolean function via the monotone theory. Information and Computation 123(1), 146–153 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campos, S.V.A., Clarke, E.M., Marrero, W.R., Minea, M.: Verifying the performance of the PCI local bus using symbolic techniques. In: ICCD, pp. 72–78 (1995)

    Google Scholar 

  5. Cantin, J.F., Lipasti, M.H., Smith, J.E.: Dynamic verification of cache coherence protocols. In: Workshop on Memory Performance Issues (2001)

    Google Scholar 

  6. Chaki, S., Strichman, O.: Optimized L *-based assume-guarantee reasoning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.: Automated assume-guarantee reasoning through implicit learning. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

    Google Scholar 

  9. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Clarke, E.M., Kröning, D.: SMV example: Bus protocol, PowerPoint file (2002)

    Google Scholar 

  11. Cobleigh, J.M., Giannakopoulou, D.: Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Gavaldà, R., Guijarro, D.: Learning ordered binary decision diagrams. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, pp. 228–238. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional verification. Formal Methods in System Design 32(3), 285–301 (2008)

    Article  MATH  Google Scholar 

  14. Handy, J.: The Cache Memory Book. Academic Press, London (1998)

    MATH  Google Scholar 

  15. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic by algorithmic learning, decision procedure, and predicate abstraction. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 180–196. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Kimura, S., Clarke, E.M.: A parallel algorithm for constructing binary decision diagrams. In: ICCD, pp. 220–223 (1990)

    Google Scholar 

  17. McMillan, K.L.: The SMV system, symbolic model checking - an approach. Technical Report CMU-CS-92-131, Carnegie Mellon University (1992)

    Google Scholar 

  18. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Nakamura, A.: An efficient query learning algorithm for ordered binary decision diagrams. Information and Computation 201(2), 178–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verification by learning assumptions. Formal Methods in System Design 32(3), 207–234 (2008)

    Article  MATH  Google Scholar 

  21. Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learning. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, YF. et al. (2010). Comparing Learning Algorithms in Automated Assume-Guarantee Reasoning. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification, and Validation. ISoLA 2010. Lecture Notes in Computer Science, vol 6415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16558-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16558-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16557-3

  • Online ISBN: 978-3-642-16558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics