Abstract
We compare two learning algorithms for generating contextual assumptions in automated assume-guarantee reasoning. The CDNF algorithm implicitly represents contextual assumptions by a conjunction of DNF formulae, while the OBDD learning algorithm uses ordered binary decision diagrams as its representation. Using these learning algorithms, the performance of assume-guarantee reasoning is compared with monolithic interpolation-based Model Checking in parametrized hardware test cases.
This research was sponsored by the GSRC under contract no. 1041377 (Princeton University), National Science Foundation under contracts no. CCF0429120, no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semiconductor Research Corporation under contract no. 2005TJ1366, General Motors under contract no. GMCMUCRLNV301, Air Force (Vanderbilt University) under contract no. 18727S3, the Office of Naval Research under award no. N000141010188, the National Science Council of Taiwan projects no. NSC97-2221-E-001-003-MY3, no. NSC97-2221-E-001-006-MY3, no. NSC97-2221-E-002-074-MY3, and no. NSC99-2218-E-001-002-MY3, Natural Sciences and Engineering Research Council of Canada NSERC Discovery Award, Chinese National 973 Plan under grant no. 2010CB328003, the NSF of China under grants no. 60635020, 60903030 and 90718039, the FORMES Project within LIAMA Consortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)
Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE Transaction on Computers C-35(8) (1986)
Bshouty, N.H.: Exact learning boolean function via the monotone theory. Information and Computation 123(1), 146–153 (1995)
Campos, S.V.A., Clarke, E.M., Marrero, W.R., Minea, M.: Verifying the performance of the PCI local bus using symbolic techniques. In: ICCD, pp. 72–78 (1995)
Cantin, J.F., Lipasti, M.H., Smith, J.E.: Dynamic verification of cache coherence protocols. In: Workshop on Memory Performance Issues (2001)
Chaki, S., Strichman, O.: Optimized L *-based assume-guarantee reasoning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291. Springer, Heidelberg (2007)
Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.: Automated assume-guarantee reasoning through implicit learning. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174. Springer, Heidelberg (2010)
Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)
Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)
Clarke, E.M., Kröning, D.: SMV example: Bus protocol, PowerPoint file (2002)
Cobleigh, J.M., Giannakopoulou, D.: Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)
Gavaldà, R., Guijarro, D.: Learning ordered binary decision diagrams. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, pp. 228–238. Springer, Heidelberg (1995)
Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional verification. Formal Methods in System Design 32(3), 285–301 (2008)
Handy, J.: The Cache Memory Book. Academic Press, London (1998)
Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic by algorithmic learning, decision procedure, and predicate abstraction. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 180–196. Springer, Heidelberg (2010)
Kimura, S., Clarke, E.M.: A parallel algorithm for constructing binary decision diagrams. In: ICCD, pp. 220–223 (1990)
McMillan, K.L.: The SMV system, symbolic model checking - an approach. Technical Report CMU-CS-92-131, Carnegie Mellon University (1992)
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
Nakamura, A.: An efficient query learning algorithm for ordered binary decision diagrams. Information and Computation 201(2), 178–198 (2005)
Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verification by learning assumptions. Formal Methods in System Design 32(3), 207–234 (2008)
Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learning. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, YF. et al. (2010). Comparing Learning Algorithms in Automated Assume-Guarantee Reasoning. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification, and Validation. ISoLA 2010. Lecture Notes in Computer Science, vol 6415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16558-0_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-16558-0_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16557-3
Online ISBN: 978-3-642-16558-0
eBook Packages: Computer ScienceComputer Science (R0)