[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symmetric LDPC Codes and Local Testing

  • Chapter
Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6390))

Abstract

Coding theoretic and complexity theoretic considerations naturally lead to the question of generating symmetric, sparse, redundant linear systems. This paper provides new way of constructions with better parameters and new lower bounds.

Low Density Parity Check (LDPC) codes are linear codes defined by short constraints (a property essential for local testing of a code). Some of the best (theoretically and practically) used codes are LDPC. Symmetric codes are those in which all coordinates “look the same”, namely there is some transitive group acting on the coordinates which preserves the code. Some of the most commonly used locally testable codes (especially in PCPs and other proof systems), including all “low-degree” codes, are symmetric. Requiring that a symmetric binary code of length n has large (linear or near-linear) distance seems to suggest a “conflict” between 1/rate and density (constraint length). In known constructions, if one is constant then the other is almost worst possible - n/poly(logn).

Our main positive result simultaneously achieves symmetric low density, constant rate codes generated by a single constraint. We present an explicit construction of a symmetric and transitive binary code of length n, near-linear distance n/(loglogn)2, of constant rate and with constraints of length (logn)4. The construction is in the spirit of Tanner codes, namely the codewords are indexed by the edges of a sparse regular expander graph. The main novelty is in our construction of a transitive (non Abelian!) group acting on these edges which preserves the code. Our construction is one instantiation of a framework we call Cayley Codes developed here, that may be viewed as extending zig-zag product to symmetric codes.

Our main negative result is that the parameters obtained above cannot be significantly improved, as long as the acting group is solvable (like the one we use). More specifically, we show that in constant rate and linear distance codes (aka ”good” codes) invariant under solvable groups, the density (length of generating constraints) cannot go down to a constant, and is bounded below by log(Ω(ℓ)) n if the group has a derived series of length ℓ. This negative result precludes natural local tests with constantly many queries for such solvable ”good” codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Low Degree Polynomials Over GF(2). In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 188–199. Springer, Heidelberg (2003); Also IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

    Google Scholar 

  2. Alon, N., Lubotzky, A., Wigderson, A.: Semi Direct product in groups and zig-zag product in graphs: connections and applictions. In: Proceedings of the 42nd Annual Symposium on the Foundations of Computer Science (FOCS), pp. 630–637 (2001)

    Google Scholar 

  3. Arora, S., Sudan, M.: Improved low degree testing and its applications. Combinatorica 23(3), 365–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babai, L., Fortnow, L., Lund, C.: Non-Deterministic Exponential Time has Two-Prover Interactive Protocols. Computational Complexity 1(1), 3–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babai, L., Shpilka, A., Stefankovic, D.: Locally testable cyclic codes. IEEE Transactions on Information Theory 51(8), 2849–2858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF Properties are Hard to Test. SIAM Journal on Computing 35(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Sasson, E., Sudan, M.: Simple PCPs with poly-log rate and query complexity. In: STOC 2005, 266–275 (2005)

    Google Scholar 

  8. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient Low Degree Tests and Short PCPs via Epsilon-Biased Sets. In: 35th Annual ACM Symposium, STOC 2003, pp. 612–621 (2003)

    Google Scholar 

  9. Berman, S.D.: Semisimple Cyclic and Abelian Codes. Cybernetics 3, 21–30 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. J. Comp. Sys. Sci. 47(3) (December 1993)

    Google Scholar 

  11. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness Conductors and Constant-Degree Expansion Beyond the Degree/2 Barrier. In: Proceedings of the 34th STOC, pp. 659–668 (2002)

    Google Scholar 

  12. Carlitz, L., Uchiyama, S.: Bounds for exponential sums. Duke Math. J. 24, 37–41 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallager, R.G.: Low density parity check codes. MIT Press, Cambridge (1963)

    MATH  Google Scholar 

  15. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct Representation of Codes with Applications to Testing (manuscript)

    Google Scholar 

  16. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length. J. ACM 53(4), 558–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holton, D.A., Sheehan, J.: The Petersen Graph. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  18. Kaufman, T., Sudan, M.: Algebraic Property Testing: The Role of Invariance. In: Proceedings of the 40th ACM Symposium on Theory of Computing, STOC (2008)

    Google Scholar 

  19. Kaufman, T., Litsyn, S.: Almost Orthogonal Linear Codes are Locally Testable. In: FOCS 2005, pp. 317–326 (2005)

    Google Scholar 

  20. Lackenby, M.: Large groups, property (τ) and the homology growth of subgroups. Math. Proc. Cambridge Philos. Soc. 146(3), 625–648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lackenby, M.: Covering spaces of 3-orbifolds. Duke Math. J. 136(1), 181–203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luby, M.G., Mitzenmacher, M., Amin Shokrollahi, M., Spielman, D.A.: Improved Low-Density Parity-Check Codes Using Irregular Graphs. IEEE Transactions on Information Theory 47(2), 585–598 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubotzky, A., Weiss, B.: Groups and expanders. In: Friedman, e.J. (ed.) Expanding Graphs. DIMACS Ser. Discrete Math. Theoret. Compt. Sci., vol. 10, pp. 95–109. Amer. Math. Soc., Providence (1993)

    Google Scholar 

  24. MacWilliams, F.J., Sloan, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)

    Google Scholar 

  25. McElice, R.J.: On the Symmetry of Good Nonlinear Codes. IEEE Trans. Inform. Theory IT-16, 609–611 (1970)

    Article  MathSciNet  Google Scholar 

  26. Meir, O.: Combinatorial Construction of Locally Testable Codes. In: Proceedings of STOC 2008, pp. 285–294 (2008)

    Google Scholar 

  27. Meshulam, R., Wigderson, A.: Expanders in Group Algebras. Combinatorica 24(4), 659–680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rozenman, E., Shalev, A., Wigderson, A.: A new family of Cayley expanders (?) In: 36th Annual ACM Symposium, STOC 2004, pp. 445–454 (2004)

    Google Scholar 

  30. Richardson, T., Urbanke, R.: The Capacity of Low-Density Parity Check Codes under Message-Passing Decoding. IEEE Transactions on Information Theory 47(2), 599–618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reingold, O., Vadhan, S., Wigderson, A.: Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders. Annals of Mathematics 155(1), 157–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions on Information Theory 42(6), 1710–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sudan, M.: Lecture notes, http://people.csail.mit.edu/madhu/FT01/scribe/bch.ps

  34. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR Lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Transactions on Information Theory 27(5), 533–547 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weil, A.: Sur les courbes algebriques et les varietes qui s’en deduisent. Actualities Sci. et Ind. no. 1041. Hermann, Paris (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaufman, T., Wigderson, A. (2010). Symmetric LDPC Codes and Local Testing. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16367-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16366-1

  • Online ISBN: 978-3-642-16367-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics