[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards an Efficient and Accurate EEG Data Analysis in EEG-Based Individual Identification

  • Conference paper
Ubiquitous Intelligence and Computing (UIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6406))

Included in the following conference series:

Abstract

Individual identification plays an important role in privacy protection and information security. Especially, with the development of brain science, individual identification based on Electroencephalograph (EEG) may be applicable. The key to realize EEG-based identification is to find the signal features with unique individual characteristics in spite of numerous signal processing algorithms and techniques. In this paper, EEG signals of 10 subjects stay in calm were collected from Cz point with eyes closed. Then EEG signal features were extracted by spectrum estimation (linear analysis) and nonlinear dynamics methods and further classified by k-Nearest-Neighbor classifier to identify each subject. Classification successful rate has reached 97.29% with linear features, while it is only 44.14% with nonlinear dynamics features. The experiment result indicates that the linear features of EEG, such as center frequency, max power, power ratio, average peak-to-peak value and coefficients of AR model may have better performance than the nonlinear dynamics parameters of EEG in individual identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition. Springer, New York (2004)

    MATH  Google Scholar 

  2. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technology, Special Issue Image- and Video-Based Biomet. 14(1), 4–20 (2004)

    Article  Google Scholar 

  3. Roizenblatt, R., Schor, P., et al.: Iris recognition as a biometric method after cataract surgery. Biomed. Eng. Online 3-2 (2004)

    Google Scholar 

  4. Markowitz, J.A.: Voice Biometrics. Communications of the ACM 43(9) (2000)

    Google Scholar 

  5. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition. Springer, New York (2004)

    MATH  Google Scholar 

  6. Duta, N., Jain, A.K., Mardia, K.V.: Matching of Palmprint. Pattern Recognition Letters 23(4) (2002)

    Google Scholar 

  7. Budowle, B., Bieber, F.R., Eisenberg, A.J.: Forensic aspects of mass disasters: Strategic considerations for DNA-based human identification. Legal Medicine 7 (2005)

    Google Scholar 

  8. Tirsch, W.S., Stude, P., Scherb, H., Keidel, M.: Temporal order of nonlinear dynamics in human brain. Brain Research Reviews 45, 79–95 (2004)

    Article  Google Scholar 

  9. Poulos, M., Rangoussi, M., et al.: Person identification from the EEG using nonlinear signal classification. Methods Inf. Med. 41(1), 64–75 (2002)

    Google Scholar 

  10. Paranjape, R.B., Mahovsky, J., Benedicenti, L., Koles, Z.: The electroencephalogram as a biometric. On Electrical and Computer Engineering, Toronto 2, 1363–1366 (2001)

    Google Scholar 

  11. Palaniappan, R.: Method of identifying individuals using VEP signals and neural network. IEE Proc-Sci. Meas. Technol. 151(1) (January 2004)

    Google Scholar 

  12. Birbaumer, N., Hinterberger, T., Kubler, A.: The Thought Translation Device (TTD): neurobevioral mechanisims and clinical outcome[J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering 11(2), 120–122 (2003)

    Article  Google Scholar 

  13. Poulos, M., Rangoussi, M., et al.: On the use of EEG features towards person identification via neural networks. Med. Inform. Internet Med. 26(1), 35–48 (2001)

    Article  Google Scholar 

  14. Poulos, M., Rangoussi, M., et al.: Person identification from the EEG using nonlinear signal classification. Methods Inf. Med. 41(1), 64–75 (2002)

    Google Scholar 

  15. Vorobyov, S., Cichocki, A., et al.: Blind noise reduction for multisensory signals using ICA and subspace filtering. With application to EEG analysis 86, 293–303 (2002)

    MATH  Google Scholar 

  16. Eichele, T., Calhoun, V.D., Debener, S.: Mining EEG-fMRI using independent component analysis. International Journal of Psychophysiology (2009)

    Google Scholar 

  17. Singh, J.: PSachin Sapatnekar Statistical timing analysis with correlated non-gaussian parameters using independent component analysis. In: Proceedings of the 43rd AQnnual Conference on Design Automation (July 2006)

    Google Scholar 

  18. Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C., Ruffini, G.: Unobtrusive Biometric System Based on Electroencephalogram Analysis. EURASIP Journal on Advances in Signal Processing, Volume 2008

    Google Scholar 

  19. Pardey, J., Roberts, S., et al.: A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 18(1), 2–11 (1996)

    Article  Google Scholar 

  20. Pincus, S.M., Viscarello, R.R.: Approximate Entropy: A Regularity Measure for Fetal Heart Rate Analysis

    Google Scholar 

  21. Pincus, S.M., Gevers, E.F., Robinson, I.C., van den Berg, G., Roelfsema, F., Hartman, M.L., et al.: Females secrete growth hormone with more process irregularity than males in both humans and rats. Am. J. Physiol. 270, E107–E115(1996)

    Google Scholar 

  22. Pincus, S.M., Viscarello, R.: Approximate entropy: a regularity measure for fetal heartrate analysis. Obstet. Gynecol. 79, 249–255 (1992)

    Google Scholar 

  23. Fang, C., Fangji, G., Jinghua, X., Zengrong, L., Ren, L.: A new measurement of complexity for studying EEG mutual information. Biophysica sinica 14(3) (1998)

    Google Scholar 

  24. Zhijie, C., Hao, S.: Improved C0-complexity and its applications. Journal of Fudan University 47(6) (2008)

    Google Scholar 

  25. Stam, C.J., van Woerkom, T.C.A.M., Pritchard, W.S.: Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroencephalography and clinical Neurophysiology 99, 214–224 (1996)

    Article  Google Scholar 

  26. Lee, Y.-J., Zhu, Y.-S., Xu, Y.-H., Shen, M.-F., Zhang, H.-X., Thakor, N.V.: Detection of non-linearity in the EEG of schizophrenic patients. Clinical Neurophysiology 112, 1288–1294 (2001)

    Article  Google Scholar 

  27. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating Largest Lyapunov exponents from small data sets, November 20 (1992)

    Google Scholar 

  28. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier Inc., Amsterdam (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, Q. et al. (2010). Towards an Efficient and Accurate EEG Data Analysis in EEG-Based Individual Identification. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds) Ubiquitous Intelligence and Computing. UIC 2010. Lecture Notes in Computer Science, vol 6406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16355-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16355-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16354-8

  • Online ISBN: 978-3-642-16355-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics