[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining Large Query Induced Graphs towards a Hierarchical Query Folksonomy

  • Conference paper
String Processing and Information Retrieval (SPIRE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6393))

Included in the following conference series:

Abstract

The human interaction through the web generates both implicit and explicit knowledge. An example of an implicit contribution is searching, as people contribute with their knowledge by clicking on retrieved documents. Thus, an important and interesting challenge is to extract semantic relations among queries and their terms from query logs. In this paper we present and discuss results on mining large query log induced graphs, and how they contribute to query classification and to understand user intent and interest. Our approach consists on efficiently obtaining a hierarchical clustering for such graphs and, then, a hierarchical query folksonomy. Results obtained with real data provide interesting insights on semantic relations among queries and are compared with conventional taxonomies, namely the ODP categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R.: Applications of web query mining. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 7–22. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query clustering for boosting web page ranking. In: Favela, J., Menasalvas, E., Chávez, E. (eds.) AWIC 2004. LNCS (LNAI), vol. 3034, pp. 164–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Baeza-Yates, R.A., Tiberi, A.: Extracting semantic relations from query logs. In: SIGKDD, pp. 76–85. ACM, New York (2007)

    Google Scholar 

  4. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: SIGKDD. ACM, New York (1999)

    Google Scholar 

  5. Chuang, S.L., Chien, L.F.: Towards automatic generation of query taxonomy: A hierarchical query clustering approach. In: IEEE International Conference on Data Mining. IEEE, Los Alamitos (2002)

    Google Scholar 

  6. Chuang, S.L., Chien., L.F.: Automatic query taxonomy generation for information retrieval applications. Online Information Review 27(5) (2003)

    Google Scholar 

  7. Chuang, S.L., Chien, L.F.: Enriching web taxonomies through subject categorization of query terms from search engine logs. Decision Support System 30(1) (2003)

    Google Scholar 

  8. Chung, F.: The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences 104(50), 19735 (2007)

    Article  Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  10. Francisco, A.P., Baeza-Yates, R., Oliveira, A.L.: Clique analysis of query log graphs. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 188–199. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Francisco, A.P., Baeza-Yates, R., Oliveira, A.L.: Mining query logs induced graphs. Tech. Rep. 36/2010, INESC-ID (2010)

    Google Scholar 

  12. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-define clusters. arXiv:0810.1355 (2008)

    Google Scholar 

  13. Shen, D., Qin, M., Chen, W., Yang, Q., Chen, Z.: Mining Web Query Hierarchies from Clickthrough Data. In: AAAI 2007, pp. 341–346. AAAI Press, Menlo Park (2007)

    Google Scholar 

  14. Wei, F., Qian, W., Wang, C., Zhou, A.: Detecting Overlapping Community Structures in Networks. World Wide Web 12(2), 235–261 (2009)

    Article  Google Scholar 

  15. Wen, J., Mie, J., Zhang, H.: Clustering user queries of a search engine. In: Proc. of the 10th International World Wide Web Conference. W3C (2001)

    Google Scholar 

  16. Zaiane, O.R., Strilets, A.: Finding similar queries to satisfy searches based on query traces. In: Efficient Web-Based Information Systems (EWIS) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Francisco, A.P., Baeza-Yates, R., Oliveira, A.L. (2010). Mining Large Query Induced Graphs towards a Hierarchical Query Folksonomy. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16321-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16320-3

  • Online ISBN: 978-3-642-16321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics