[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Software Framework for Efficient Tensor Representation and Decompositions for Pattern Recognition in Computer Vision

  • Conference paper
Image Processing and Communications Challenges 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 84))

Summary

In this paper we present a novel software framework for efficient representation and manipulations of tensors which aims in minimizing data copying. Tensors are stored in the matricized form with simultaneous abstraction superimposed on tensor indices thanks to the proxy design pattern. The proposed software pattern was then used in computation of the Higher- Order Singular Value Decomposition. Finally, the whole framework was tested in the problem of static gesture recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aja-Fernández, S., de Luis García, R., Tao, D., Li, X.: Tensors in Image Processing and Computer Vision. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  2. Bader, B.W., Kolda, T.G.: MATLAB Tensor Classes for Fast Algorithm Prototyping. ACM Transactions on Mathematical Software 32(4), 635–653 (2006)

    Article  MathSciNet  Google Scholar 

  3. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester (2009)

    Book  Google Scholar 

  4. Cyganek, B., Siebert, J.P.: An Introduction to 3D Computer Vision Techniques and Algorithms. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  5. Cyganek, B.: Architecture of an Integrated Software-Hardware System for Accelerated Image Processing. LNCS, vol. 5337, pp. 1–13. Springer, Heidelberg (2009)

    Google Scholar 

  6. http://www.wiley.com/legacy/wileychi/cyganek3dcomputer/supp/HIL_Manual_01.pdf

  7. Lathauwer de, L.: Signal Processing Based on Multilinear Algebra. PhD dissertation, Katholieke Universiteit Leuven (1997)

    Google Scholar 

  8. Lathauwer de, L., Moor de, B., Vandewalle, J.: A Multilinear Singular Value Decomposition. SIAM Journal Matrix Analysis and Applications 21(4), 1253–1278 (2000)

    Article  MATH  Google Scholar 

  9. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  10. Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recognition 40, 993–1003 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cyganek, B. (2010). Software Framework for Efficient Tensor Representation and Decompositions for Pattern Recognition in Computer Vision. In: Choraś, R.S. (eds) Image Processing and Communications Challenges 2. Advances in Intelligent and Soft Computing, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16295-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16295-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16294-7

  • Online ISBN: 978-3-642-16295-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics