Summary
In this paper we present a novel software framework for efficient representation and manipulations of tensors which aims in minimizing data copying. Tensors are stored in the matricized form with simultaneous abstraction superimposed on tensor indices thanks to the proxy design pattern. The proposed software pattern was then used in computation of the Higher- Order Singular Value Decomposition. Finally, the whole framework was tested in the problem of static gesture recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aja-Fernández, S., de Luis García, R., Tao, D., Li, X.: Tensors in Image Processing and Computer Vision. Springer, Heidelberg (2009)
Bader, B.W., Kolda, T.G.: MATLAB Tensor Classes for Fast Algorithm Prototyping. ACM Transactions on Mathematical Software 32(4), 635–653 (2006)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester (2009)
Cyganek, B., Siebert, J.P.: An Introduction to 3D Computer Vision Techniques and Algorithms. Wiley, Chichester (2009)
Cyganek, B.: Architecture of an Integrated Software-Hardware System for Accelerated Image Processing. LNCS, vol. 5337, pp. 1–13. Springer, Heidelberg (2009)
http://www.wiley.com/legacy/wileychi/cyganek3dcomputer/supp/HIL_Manual_01.pdf
Lathauwer de, L.: Signal Processing Based on Multilinear Algebra. PhD dissertation, Katholieke Universiteit Leuven (1997)
Lathauwer de, L., Moor de, B., Vandewalle, J.: A Multilinear Singular Value Decomposition. SIAM Journal Matrix Analysis and Applications 21(4), 1253–1278 (2000)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)
Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recognition 40, 993–1003 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cyganek, B. (2010). Software Framework for Efficient Tensor Representation and Decompositions for Pattern Recognition in Computer Vision. In: Choraś, R.S. (eds) Image Processing and Communications Challenges 2. Advances in Intelligent and Soft Computing, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16295-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-16295-4_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16294-7
Online ISBN: 978-3-642-16295-4
eBook Packages: EngineeringEngineering (R0)