Abstract
The analysis of complex-shape electromechanical devices is considered. The use of numerical Schwarz-Christoffel (SC) mapping, coordinated with finite element (FE) analysis, is proposed for fast computation of 2D fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping. Cambridge University Press, Cambridge (2002)
Stoll, R.L.: Simple computational model for calculating the unbalanced magnetic pull on a two-pole turbogenerator rotor due to eccentricity. IEE Proc. - Electr. Power Appl. 144(4), 263–270 (1997)
Binns, K.J., Lawrenson, P.J., Trowbridge, C.W.: The Analytical and Numerical Solution of Electric and Magnetic Fields. Wiley, New York (1992)
Costamagna, E., Di Barba, P., Savini, A.: An effective application of Schwarz-Christoffel transformations to the shape design of permanent-magnet motors. Intl J. of Applied Electromagnetics and Mechanics 21, 21–37 (2005)
Costamagna, E., Di Barba, P., Savini, A.: Synthesis of boundary conditions in a subdomain using the Schwarz-Christoffel transformation for the field analysis. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 25(3), 627–634 (2006)
Costamagna, E., Di Barba, P., Savini, A.: Shape Design of a MEMS Device by Schwarz-Christoffel Numerical Inversion and Pareto Optimality. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 27(4), 760–769 (2008)
Durand, E.: Electrostatique et Magnétostatique. Masson, Paris (1953)
Binns, K.J., Lawrenson, P.S.: Analysis and Computation of Electric and Magnetic Field Problems. Pergamon Press, Oxford (1963)
Trefethen, L.N.: Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comput. (1), 82–102 (1980)
Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)
Howe, D.: The application of numerical methods to the conformal transformation of polygonal boundaries. J. Inst. Math. Appl. (12), 125–136 (1973)
Costamagna, E., Maltese, U.: Unpublished works and FORTRAN programs, Marconi Italiana S.p.A., Genova (1970-1971)
Costamagna, E.: On the numerical inversion of the Schwarz-Christoffel conformal transformation. IEEE Trans. Microwave Theory Tech. 35(1), 35–40 (1987)
Chaudhry, M.A., Schinzinger, R.: Numerical computation of the Schwarz-Christoffel transformation parameter for conformal mapping of arbitrarily shaped polygons with finite vertices. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) II(1), 263–275 (1992)
Chuang, J.M., Gui, Q.Y., Hsiung, C.C.: Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded domains Comput. Methods Appl. Mech. Engr. 105, 93–109 (1993)
Costamagna, E.: Integration formulas for numerical calculations of the Schwarz-Christoffel conformal transformation. Microwave Opt. Technol. Lett. 15(4), 219–224 (1997)
Dwigth, H.B.: Tables of Integrals and Other Mathematical Data, 3rd edn. MacMillan, New York (1957)
Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. RIMS, Kyoto Univ. (9), 721–741 (1974)
Singh, R., Singh, S.: Efficient evaluation of singular and infinite integrals using the tanh transformation. IEE Proc. Microwave Antennas Propagat. 141(6), 464–466 (1994)
Evans, G.A., Forbes, R.C., Hyslop, J.: The tanh transformation for singular integrals. Int. J. Comput. Math. 15, 339–358 (1984)
Costamagna, E.: Error masking phenomena during numerical computation of Schwarz-Christoffel conformal transformations. Microwave Opt. Technol. Lett. 20(4), 223–225 (1999)
Hu, C.: Algorithm 785: A software package for computing Schwarz-Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Soft. 24(3), 317–333 (1998)
Schinzinger, R., Laura, P.A.A.: Conformal Mapping: Methods and Applications. Elsevier, Amsterdam (1991)
Driscoll, T.A., Vavasis, S.A.: Numerical conformal mapping using cross-ratios and Delaunay triangulations. SIAM J. Sci. Comput. 19(6), 1783–1803 (1998)
Howell, L.H., Trefethen, L.N.: A modified Schwarz-Christoffel transformation for elongated regions. SIAM J. Sci. Stat. Comput. 11(5), 928–949 (1990)
Costamagna, E.: A new approach to standard Schwarz-Christoffel formula calculations, Microwave Opt. Technol. Lett. 32(3), 196–199 (1997)
Driscoll, T.A.: Schwarz-Christoffel Toobox Userr’s Guide, version 2.3, see [1] for website
Bowman, F.: Notes on two-dimensional electric field problems. Proc. London Math. Soc. 39, 205–215 (1935)
Papamichael, N., Kokkinos, C.A.: The use of singular functions for the approximate conformal mapping of doubly connected regions. SIAM J. Sci. Stat. Comput. (5), 685–700 (1984)
Smythe, W.R.: Static and Dinamic Electricity, 3rd edn. MacGraw-Hill, New York (1968)
Costamagna, E., Fanni, A.: Computing capacitances via the Schwarz-Christoffel transformation in structures with rotational symmetry. IEEE Trans. Magn. 34(5), 2497–2500 (1998)
Alfonzetti, S., Costamagna, E., Fanni, A.: Computing capacitances of vias in multilayered boards. IEEE Trans. Magn. 37(5), 3186–3189 (2001)
Costamagna, E., Di Barba, P., Savini, A.: Conformal mapping of doubly connected domains: an application to the modelling of an electrostatic micromotor. IET Science, Measurement & Technology 3(5), 334–342 (2009)
Krabbes, G., Fuchs, G., Canders, W.R., May, H., Palka, R.: High Temperature Superconductor Bulk Materials. Wiley-VCH, Berlin (2006)
May, H., Palka, R., Portabella, E., Canders, W.R.: Evaluation of the magnetic field – high temperature superconductor interactions. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 23(1), 286–304 (2004)
Electronic sources: http://www.infolytica.com
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Costamagna, E., Di Barba, P., Mognaschi, M.E., Savini, A. (2010). Fast Algorithms for the Design of Complex-Shape Devices in Electromechanics. In: Wiak, S., Napieralska-Juszczak, E. (eds) Computational Methods for the Innovative Design of Electrical Devices. Studies in Computational Intelligence, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16225-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-16225-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16224-4
Online ISBN: 978-3-642-16225-1
eBook Packages: EngineeringEngineering (R0)