[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 327))

Abstract

The analysis of complex-shape electromechanical devices is considered. The use of numerical Schwarz-Christoffel (SC) mapping, coordinated with finite element (FE) analysis, is proposed for fast computation of 2D fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  2. Stoll, R.L.: Simple computational model for calculating the unbalanced magnetic pull on a two-pole turbogenerator rotor due to eccentricity. IEE Proc. - Electr. Power Appl. 144(4), 263–270 (1997)

    Article  Google Scholar 

  3. Binns, K.J., Lawrenson, P.J., Trowbridge, C.W.: The Analytical and Numerical Solution of Electric and Magnetic Fields. Wiley, New York (1992)

    Google Scholar 

  4. Costamagna, E., Di Barba, P., Savini, A.: An effective application of Schwarz-Christoffel transformations to the shape design of permanent-magnet motors. Intl J. of Applied Electromagnetics and Mechanics 21, 21–37 (2005)

    Google Scholar 

  5. Costamagna, E., Di Barba, P., Savini, A.: Synthesis of boundary conditions in a subdomain using the Schwarz-Christoffel transformation for the field analysis. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 25(3), 627–634 (2006)

    Article  Google Scholar 

  6. Costamagna, E., Di Barba, P., Savini, A.: Shape Design of a MEMS Device by Schwarz-Christoffel Numerical Inversion and Pareto Optimality. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 27(4), 760–769 (2008)

    Article  MATH  Google Scholar 

  7. Durand, E.: Electrostatique et Magnétostatique. Masson, Paris (1953)

    Google Scholar 

  8. Binns, K.J., Lawrenson, P.S.: Analysis and Computation of Electric and Magnetic Field Problems. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  9. Trefethen, L.N.: Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comput. (1), 82–102 (1980)

    Google Scholar 

  10. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)

    MATH  Google Scholar 

  11. Howe, D.: The application of numerical methods to the conformal transformation of polygonal boundaries. J. Inst. Math. Appl. (12), 125–136 (1973)

    Google Scholar 

  12. Costamagna, E., Maltese, U.: Unpublished works and FORTRAN programs, Marconi Italiana S.p.A., Genova (1970-1971)

    Google Scholar 

  13. Costamagna, E.: On the numerical inversion of the Schwarz-Christoffel conformal transformation. IEEE Trans. Microwave Theory Tech. 35(1), 35–40 (1987)

    Article  Google Scholar 

  14. Chaudhry, M.A., Schinzinger, R.: Numerical computation of the Schwarz-Christoffel transformation parameter for conformal mapping of arbitrarily shaped polygons with finite vertices. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) II(1), 263–275 (1992)

    Article  MathSciNet  Google Scholar 

  15. Chuang, J.M., Gui, Q.Y., Hsiung, C.C.: Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded domains Comput. Methods Appl. Mech. Engr. 105, 93–109 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Costamagna, E.: Integration formulas for numerical calculations of the Schwarz-Christoffel conformal transformation. Microwave Opt. Technol. Lett. 15(4), 219–224 (1997)

    Article  Google Scholar 

  17. Dwigth, H.B.: Tables of Integrals and Other Mathematical Data, 3rd edn. MacMillan, New York (1957)

    Google Scholar 

  18. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. RIMS, Kyoto Univ. (9), 721–741 (1974)

    Google Scholar 

  19. Singh, R., Singh, S.: Efficient evaluation of singular and infinite integrals using the tanh transformation. IEE Proc. Microwave Antennas Propagat. 141(6), 464–466 (1994)

    Article  Google Scholar 

  20. Evans, G.A., Forbes, R.C., Hyslop, J.: The tanh transformation for singular integrals. Int. J. Comput. Math. 15, 339–358 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Costamagna, E.: Error masking phenomena during numerical computation of Schwarz-Christoffel conformal transformations. Microwave Opt. Technol. Lett. 20(4), 223–225 (1999)

    Article  Google Scholar 

  22. Hu, C.: Algorithm 785: A software package for computing Schwarz-Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Soft. 24(3), 317–333 (1998)

    Article  MATH  Google Scholar 

  23. Schinzinger, R., Laura, P.A.A.: Conformal Mapping: Methods and Applications. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  24. Driscoll, T.A., Vavasis, S.A.: Numerical conformal mapping using cross-ratios and Delaunay triangulations. SIAM J. Sci. Comput. 19(6), 1783–1803 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Howell, L.H., Trefethen, L.N.: A modified Schwarz-Christoffel transformation for elongated regions. SIAM J. Sci. Stat. Comput. 11(5), 928–949 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Costamagna, E.: A new approach to standard Schwarz-Christoffel formula calculations, Microwave Opt. Technol. Lett. 32(3), 196–199 (1997)

    Google Scholar 

  27. Driscoll, T.A.: Schwarz-Christoffel Toobox Userr’s Guide, version 2.3, see [1] for website

    Google Scholar 

  28. Bowman, F.: Notes on two-dimensional electric field problems. Proc. London Math. Soc. 39, 205–215 (1935)

    Article  MATH  Google Scholar 

  29. Papamichael, N., Kokkinos, C.A.: The use of singular functions for the approximate conformal mapping of doubly connected regions. SIAM J. Sci. Stat. Comput. (5), 685–700 (1984)

    Google Scholar 

  30. Smythe, W.R.: Static and Dinamic Electricity, 3rd edn. MacGraw-Hill, New York (1968)

    Google Scholar 

  31. Costamagna, E., Fanni, A.: Computing capacitances via the Schwarz-Christoffel transformation in structures with rotational symmetry. IEEE Trans. Magn. 34(5), 2497–2500 (1998)

    Article  Google Scholar 

  32. Alfonzetti, S., Costamagna, E., Fanni, A.: Computing capacitances of vias in multilayered boards. IEEE Trans. Magn. 37(5), 3186–3189 (2001)

    Article  Google Scholar 

  33. Costamagna, E., Di Barba, P., Savini, A.: Conformal mapping of doubly connected domains: an application to the modelling of an electrostatic micromotor. IET Science, Measurement & Technology 3(5), 334–342 (2009)

    Article  Google Scholar 

  34. Krabbes, G., Fuchs, G., Canders, W.R., May, H., Palka, R.: High Temperature Superconductor Bulk Materials. Wiley-VCH, Berlin (2006)

    Book  Google Scholar 

  35. May, H., Palka, R., Portabella, E., Canders, W.R.: Evaluation of the magnetic field – high temperature superconductor interactions. The Intl J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 23(1), 286–304 (2004)

    Article  Google Scholar 

  36. Electronic sources: http://www.infolytica.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costamagna, E., Di Barba, P., Mognaschi, M.E., Savini, A. (2010). Fast Algorithms for the Design of Complex-Shape Devices in Electromechanics. In: Wiak, S., Napieralska-Juszczak, E. (eds) Computational Methods for the Innovative Design of Electrical Devices. Studies in Computational Intelligence, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16225-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16225-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16224-4

  • Online ISBN: 978-3-642-16225-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics