Abstract
An optimization based method for determining magnetically nonlinear iron core characteristics of transformers is proposed. The method requires a magnetically nonlinear dynamic model of the transformer as well as voltages and currents measured during the switch-on of unloaded transformer. The magnetically nonlinear iron core characteristic is in the model accounted for in the form of three different approximation functions. Their parameters are determined by the stochastic search algorithm called differential evolution. The optimization goal is to find those values of approximation functions parameters where the root mean square differences between measured and calculated currents are minimal. The impact of individual approximation functions on calculated dynamic responses of the transformer are evaluated by the comparison of measured and calculated results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Calabro, S., Coppadoro, F., Crepaz, S.: The measurement of the magnetization characteristics of large power transformers and reactors through d.c. excitation. IEEE Transactions on Power Delivery 1(4), 224–232 (1986)
Štumberger, G., Polajžer, B., Štumberger, B., Toman, M., Dolinar, D.: Evaluation of experimental methods for determining the magnetically nonlinear characteristics of electromagnetic devices. IEEE Transactions on Magnetics 41(10), 4030–4032 (2005)
Dolinar, M., Dolinar, D., Štumberger, G., Polajžer, B., Ritonja, J.: A Three-Phase Core-Type Transformer Iron Core Model With Included Magnetic Cross Saturation. IEEE Transactions on Magnetics 42(10), 2849–2851 (2006)
Ren, Z., Razek, A.: A strong coupled model for analysing dynamic behaviours of non-linear electromechanical systems. IEEE Transactions on Magnetics 30(5), 3252–3255 (1994)
Dolinar, D., Štumberger, G., Grčar, B.: Calculation of the linear induction motor model parameters using finite elements. IEEE Transactions on Magnetics 34(5), 3640–3643 (1998)
Flux2d user’s guide, Cedrat (2000)
Pedra, J., Sainz, L., Corcoles, F., Lopez, R., Salichs, M.: PSPICE computer model of a nonlinear three phase Three-legged transformer. IEEE Transactions on Power Delivery 19(1), 200–207 (2004)
Perez-Rojas, C.: Fitting saturation and hysteresis via arctangent functions. IEEE Power Engineering Review 20(11), 55–57 (2000)
Štumberger, G., Štumberger, B., Dolinar, D., Težak, O.: Nonlinear model of linear synchronous reluctance motor for real time applications. Compel 23(1), 316–327 (2004)
Price, K.V., Storn, R.V., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Štumberger, G., Žarko, D., Tokic, A., Dolinar, D. (2010). Magnetically Nonlinear Iron Core Characteristics of Transformers Determined by Differential Evolution. In: Wiak, S., Napieralska-Juszczak, E. (eds) Computational Methods for the Innovative Design of Electrical Devices. Studies in Computational Intelligence, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16225-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-16225-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16224-4
Online ISBN: 978-3-642-16225-1
eBook Packages: EngineeringEngineering (R0)