Abstract
This paper addresses three important issues in automatic prediction of user satisfaction transitions in dialogues. The first issue concerns the individual differences in user satisfaction ratings and how they affect the possibility of creating a user-independent prediction model. The second issue concerns how to determine appropriate evaluation criteria for predicting user satisfaction transitions. The third issue concerns how to train suitable prediction models. We present our findings for these issues on the basis of the experimental results using dialogue data in two domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dwass, M.: Some k-sample rank-order tests. In: Olkin, I., et al. (eds.) Contributions to Probability and Statistics, pp. 198–202. Stanford University Press, Stanford (1960)
Engelbrech, K.P., Gödde, F., Hartard, F., Ketabdar, H., Möller, S.: Modeling user satisfaction with hidden Markov models. In: Proc. SIGDIAL, pp. 170–177 (2009)
Higashinaka, R., Dohsaka, K., Isozaki, H.: Effects of self-disclosure and empathy in human-computer dialogue. In: Proc. SLT, pp. 109–112 (2008)
Higashinaka, R., Miyazaki, N., Nakano, M., Aikawa, K.: Evaluating discourse understanding in spoken dialogue systems. ACM Trans. Speech Lang. Process. 1, 1–20 (2004)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. ICML, pp. 282–289 (2001)
Meguro, T., Higashinaka, R., Dohsaka, K., Minami, Y., Isozaki, H.: Analysis of listening-oriented dialogue for building listening agents. In: Proc. SIGDIAL, pp. 124–127 (2009)
Möller, S., Engelbrecht, K.P., Schleicher, R.: Predicting the quality and usability of spoken dialogue services. Speech Communication 50(8-9), 730–744 (2008)
Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Magazine 3(1), 4–16 (1986)
Subramaniam, L.V., Faruquie, T.A., Ikbal, S., Godbole, S., Mohania, M.K.: Business intelligence from voice of customer. In: Proc. ICDE, pp. 1391–1402 (2009)
Suzuki, J., McDermott, E., Isozaki, H.: Training conditional random fields with multivariate evaluation measures. In: Proc. COLING-ACL, pp. 217–224 (2006)
Takeuchi, H., Subramaniam, L.V., Nasukawa, T., Roy, S., Balakrishnan, S.: A conversation-mining system for gathering insights to improve agent productivity. In: Proc. IEEE International Conference on E-Commerce Technology and IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, pp. 465–468 (2007)
Walker, M.A., Langkilde-Geary, I., Hastie, H.W., Wright, J., Gorin, A.: Automatically training a problematic dialogue predictor for a spoken dialogue system. Journal of Artificial Intelligence Research 16(1), 293–319 (2002)
Walker, M.A., Litman, D., Kamm, C.A., Abella, A.: PARADISE: A framework for evaluating spoken dialogue agents. In: Proc. EACL, pp. 271–280 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Higashinaka, R., Minami, Y., Dohsaka, K., Meguro, T. (2010). Issues in Predicting User Satisfaction Transitions in Dialogues: Individual Differences, Evaluation Criteria, and Prediction Models. In: Lee, G.G., Mariani, J., Minker, W., Nakamura, S. (eds) Spoken Dialogue Systems for Ambient Environments. IWSDS 2010. Lecture Notes in Computer Science(), vol 6392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16202-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-16202-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16201-5
Online ISBN: 978-3-642-16202-2
eBook Packages: Computer ScienceComputer Science (R0)