[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast and Accurate Phylogenetic Reconstruction from High-Resolution Whole-Genome Data and a Novel Robustness Estimator

  • Conference paper
Comparative Genomics (RECOMB-CG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6398))

Included in the following conference series:

Abstract

The rapid accumulation of whole-genome data has renewed interest in the study of genomic rearrangements. Comparative genomics, evolutionary biology, and cancer research all require models and algorithms to elucidate the mechanisms, history, and consequences of these rearrangements. However, even simple models lead to NP-hard problems, particularly in the area of phylogenetic analysis. Current approaches are limited to small collections of genomes and low-resolution data (typically a few hundred syntenic blocks). Moreover, whereas phylogenetic analyses from sequence data are deemed incomplete unless bootstrapping scores (a measure of confidence) are given for each tree edge, no equivalent to bootstrapping exists for rearrangement-based phylogenetic analysis.

We describe a fast and accurate algorithm for rearrangement analysis that scales up, in both time and accuracy, to modern high-resolution genomic data. We also describe a novel approach to estimate the robustness of results—an equivalent to the bootstrapping analysis used in sequence-based phylogenetic reconstruction. We present the results of extensive testing on both simulated and real data showing that our algorithm returns very accurate results, while scaling linearly with the size of the genomes and cubically with their number. We also present extensive experimental results showing that our approach to robustness testing provides excellent estimates of confidence, which, moreover, can be tuned to trade off thresholds between false positives and false negatives. Together, these two novel approaches enable us to attack heretofore intractable problems, such as phylogenetic inference for high-resolution vertebrate genomes, as we demonstrate on a set of six vertebrate genomes with 8,380 syntenic blocks.

Availability: a copy of the software is available on demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Research 19(5), 943–957 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amrine-Madsen, H., Koepfli, K.-P., Wayne, R.K., Springer, M.S.: A new phylogenetic marker, apolipoprotein b, provides compelling evidence for eutherian relationships. Molecular Phylogenetics and Evolution 28(2), 225–240 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 25–34. Univ. Academy Press, Tokyo (1997)

    Google Scholar 

  5. Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cannarozzi, G., Schneider, A., Gonnet, G.: A phylogenomic study of human, dog, and mouse. PLoS Comput. Biol. 3, e2 (2007)

    Google Scholar 

  7. Day, W.H.E., Sankoff, D.: The computational complexity of inferring phylogenies from chromosome inversion data. J. Theor. Biol. 127, 213–218 (1987)

    Article  Google Scholar 

  8. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evol. 39, 783–791 (1985)

    Article  Google Scholar 

  9. Felsenstein, J., Kishino, H.: Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst. Biol. 42(2), 193–200 (1993)

    Google Scholar 

  10. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    Book  Google Scholar 

  11. Hillis, D.M., Huelsenbeck, J.P.: Assessing molecular phylogenies. Science 267, 255–256 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Huttley, G.A., Wakefield, M.J., Easteal, S.: Rates of genome evolution and branching order from whole-genome analysis. Mol. Biol. Evol. 24(8), 1722–1730 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Lin, Y., Moret, B.M.E.: Estimating true evolutionary distances under the DCJ model. In: Proc. 16th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB 2008). Bioinformatics, vol. 24(13), pp. i114–i122 (2008)

    Google Scholar 

  14. Lin, Y., Rajan, V., Swenson, K.M., Moret, B.M.E.: Estimating true evolutionary distances under rearrangements, duplications, and losses. In: Proc. 8th Asia Pacific Bioinf. Conf (APBC 2010). BMC Bioinformatics, vol. 11(suppl. 1), p. S54 (2010)

    Google Scholar 

  15. Madsen, O., Scally, M., Douady, C.J., Kao, D.J., DeBry, R.W., Adkins, R., Amrine, H.M., Stanhope, M.J., de Jong, W.W., Springer, M.S.: Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Moret, B.M.E., Tang, J., Wang, L.-S., Warnow, T.: Steps toward accurate reconstructions of phylogenies from gene-order data. J. Comput. Syst. Sci. 65(3), 508–525 (2002)

    Article  Google Scholar 

  17. Moret, B.M.E., Wyman, S.K., Bader, D.A., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. on Biocomputing (PSB 2001), pp. 583–594. World Scientific Pub., Singapore (2001)

    Google Scholar 

  18. Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A., O’Brien, S.J.: Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009), ISBN 3-900051-07-0

    Google Scholar 

  20. Robinson, D.R., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147 (1981)

    Article  Google Scholar 

  21. Rokas, A., Holland, P.W.H.: Rare genomic changes as a tool for phylogenetics. Trends in Ecol. and Evol. 15, 454–459 (2000)

    Article  CAS  Google Scholar 

  22. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    CAS  PubMed  Google Scholar 

  23. Shi, J., Zhang, Y., Luo, H., Tang, J.: Using jackknife to assess the quality of gene order phylogenies. BMC Bioinformatics 11(168) (2010)

    Google Scholar 

  24. Soltis, P.S., Soltis, D.E.: Applying the bootstrap in phylogeny reconstruction. Statist. Sci. 18(2), 256–267 (2003)

    Article  Google Scholar 

  25. Sturtevant, A.H.: A crossover reducer in Drosophila melanogaster due to inversion of a section of the third chromosome. Biol. Zent. Bl. 46, 697–702 (1926)

    Google Scholar 

  26. Sturtevant, A.H., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura and their use in the study of the history of the species. Proc. Nat’l Acad. Sci., USA 22, 448–450 (1936)

    Article  CAS  Google Scholar 

  27. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic inference. In: Hillis, D.M., Mable, B.K., Moritz, C. (eds.) Molecular Systematics, pp. 407–514. Sinauer Assoc., Sunderland (1996)

    Google Scholar 

  28. Tang, J., Moret, B.M.E.: Scaling up accurate phylogenetic reconstruction from gene-order data. In: Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol (ISMB 2003). Bioinformatics, vol. 19, pp. i305–i312. Oxford U. Press, Oxford (2003)

    Google Scholar 

  29. Wang, L.-S.: Exact-IEBP: a new technique for estimating evolutionary distances between whole genomes. In: Proc. 33rd Ann. ACM Symp. Theory of Comput (STOC 2001), pp. 637–646. ACM Press, New York (2001)

    Google Scholar 

  30. Wang, L.-S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 176–190. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Wildman, D.E., Uddin, M., Opazo, J.C., Liu, G., Lefort, V., Guindon, S., Gascuel, O., Grossman, L.I., Romero, R., Goodman, M.: Genomics, biogeography, and the diversification of placental mammals. Proc. Nat’l Acad. Sci., USA 104(36), 14395–14400 (2007)

    Article  CAS  Google Scholar 

  32. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Zwickl, D.J., Hillis, D.M.: Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51(4), 588–598 (2002)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Y., Rajan, V., Moret, B.M.E. (2010). Fast and Accurate Phylogenetic Reconstruction from High-Resolution Whole-Genome Data and a Novel Robustness Estimator. In: Tannier, E. (eds) Comparative Genomics. RECOMB-CG 2010. Lecture Notes in Computer Science(), vol 6398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16181-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16181-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16180-3

  • Online ISBN: 978-3-642-16181-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics