[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Second Order Subspace Analysis and Simple Decompositions

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

The recovery of the mixture of an N-dimensional signal generated by N independent processes is a well studied problem (see e.g. [1,10]) and robust algorithms that solve this problem by Joint Diagonalization exist. While there is a lot of empirical evidence suggesting that these algorithms are also capable of solving the case where the source signals have block structure (apart from a final permutation recovery step), this claim could not be shown yet - even more, it previously was not known if this model separable at all. We present a precise definition of the subspace model, introducing the notion of simple components, show that the decomposition into simple components is unique and present an algorithm handling the decomposition task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing 45(2), 434–444 (1997)

    Article  Google Scholar 

  2. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 14(4), 927–949 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cardoso, J.-F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gutch, H.W., Theis, F.J.: Independent subspace analysis is unique, given irreducibility. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 49–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Liu, W., Mandic, D.P., Cichocki, A.: Blind source extraction based on a linear predictor. IET Signal Process. 1(1), 29–34 (2007)

    Article  Google Scholar 

  6. Maehara, T., Murota, K.: Error-controlling algorithm for simultaneous block-diagonalization and its application to independent component analysis. JSIAM Letters (submitted)

    Google Scholar 

  7. Maehara, T., Murota, K.: Algorithm for error-controlled simultaneous block-diagonalization of matrices. Technical Report METR-2009-53 (December 2009)

    Google Scholar 

  8. Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  9. Theis, F.J.: Towards a general independent subspace analysis. In: Proc. NIPS, pp. 1361–1368 (January 2006)

    Google Scholar 

  10. Tong, L., Soon, V.C., Huang, Y.-F., Liu, R.: AMUSE: a new blind identification algorithm. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1784–1787 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutch, H.W., Maehara, T., Theis, F.J. (2010). Second Order Subspace Analysis and Simple Decompositions. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics