Abstract
The recovery of the mixture of an N-dimensional signal generated by N independent processes is a well studied problem (see e.g. [1,10]) and robust algorithms that solve this problem by Joint Diagonalization exist. While there is a lot of empirical evidence suggesting that these algorithms are also capable of solving the case where the source signals have block structure (apart from a final permutation recovery step), this claim could not be shown yet - even more, it previously was not known if this model separable at all. We present a precise definition of the subspace model, introducing the notion of simple components, show that the decomposition into simple components is unique and present an algorithm handling the decomposition task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing 45(2), 434–444 (1997)
Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 14(4), 927–949 (1993)
Cardoso, J.-F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)
Gutch, H.W., Theis, F.J.: Independent subspace analysis is unique, given irreducibility. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 49–56. Springer, Heidelberg (2007)
Liu, W., Mandic, D.P., Cichocki, A.: Blind source extraction based on a linear predictor. IET Signal Process. 1(1), 29–34 (2007)
Maehara, T., Murota, K.: Error-controlling algorithm for simultaneous block-diagonalization and its application to independent component analysis. JSIAM Letters (submitted)
Maehara, T., Murota, K.: Algorithm for error-controlled simultaneous block-diagonalization of matrices. Technical Report METR-2009-53 (December 2009)
Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72(23), 3634–3637 (1994)
Theis, F.J.: Towards a general independent subspace analysis. In: Proc. NIPS, pp. 1361–1368 (January 2006)
Tong, L., Soon, V.C., Huang, Y.-F., Liu, R.: AMUSE: a new blind identification algorithm. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1784–1787 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gutch, H.W., Maehara, T., Theis, F.J. (2010). Second Order Subspace Analysis and Simple Decompositions. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-15995-4_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15994-7
Online ISBN: 978-3-642-15995-4
eBook Packages: Computer ScienceComputer Science (R0)