Abstract
A multi-class traffic scene segmentation approach based on scene flow data is presented. Opposed to many other approaches using color or texture features, our approach is purely based on dense depth and 3D motion information. Using prior knowledge on tracked objects in the scene and the pixel-wise uncertainties of the scene flow data, each pixel is assigned to either a particular moving object class (tracked/unknown object), the ground surface, or static background. The global topological order of classes, such as objects are above ground, is locally integrated into a conditional random field by an ordering constraint. The proposed method yields very accurate segmentation results on challenging real world scenes, which we made publicly available for comparison.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wojek, C., Schiele, B.: A dynamic conditional random field model for joint labeling of object and scene classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 733–747. Springer, Heidelberg (2008)
Ess, A., Müller, T., Grabner, H., van Gool, L.: Segmentation-based urban traffic scene understanding. In: BMVC (2009)
Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image & Vision Comp. 28 (2010)
Sturgess, P., Alahari, K., Ladicky, L., Torr, P.: Combining appearance and structure from motion features for road scene understanding. In: BMVC 2009 (2009)
Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008)
Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate 3D motion field estimation from stereo image sequences in real-time. In: Daniilidis, K. (ed.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010)
Wedel, A., Meißner, A., Rabe, C., Franke, U., Cremers, D.: Detection and segmentation of independently moving objects from dense scene flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 14–27. Springer, Heidelberg (2009)
Bachmann, A.: Applying recursive EM to scene segmentation. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 512–521. Springer, Heidelberg (2009)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)
MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M.F., Rother, C.: A comparative study of energy minimization methods for markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)
Ramalingam, S., Kohli, P., Alahari, K., Torr, P.H.S.: Exact inference in multi-label CRFs with higher-order cliques. In: CVPR, pp. 1–8 (2008)
Barth, A., Franke, U.: Estimating the driving state of oncoming vehicles from a moving platform using stereo vision. IEEE Trans. on ITS 10(4), 560–571 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barth, A., Siegemund, J., Meißner, A., Franke, U., Förstner, W. (2010). Probabilistic Multi-class Scene Flow Segmentation for Traffic Scenes. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)