[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Probabilistic Multi-class Scene Flow Segmentation for Traffic Scenes

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

A multi-class traffic scene segmentation approach based on scene flow data is presented. Opposed to many other approaches using color or texture features, our approach is purely based on dense depth and 3D motion information. Using prior knowledge on tracked objects in the scene and the pixel-wise uncertainties of the scene flow data, each pixel is assigned to either a particular moving object class (tracked/unknown object), the ground surface, or static background. The global topological order of classes, such as objects are above ground, is locally integrated into a conditional random field by an ordering constraint. The proposed method yields very accurate segmentation results on challenging real world scenes, which we made publicly available for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wojek, C., Schiele, B.: A dynamic conditional random field model for joint labeling of object and scene classes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 733–747. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Ess, A., Müller, T., Grabner, H., van Gool, L.: Segmentation-based urban traffic scene understanding. In: BMVC (2009)

    Google Scholar 

  3. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image & Vision Comp. 28 (2010)

    Google Scholar 

  4. Sturgess, P., Alahari, K., Ladicky, L., Torr, P.: Combining appearance and structure from motion features for road scene understanding. In: BMVC 2009 (2009)

    Google Scholar 

  5. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate 3D motion field estimation from stereo image sequences in real-time. In: Daniilidis, K. (ed.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010)

    Google Scholar 

  7. Wedel, A., Meißner, A., Rabe, C., Franke, U., Cremers, D.: Detection and segmentation of independently moving objects from dense scene flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 14–27. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Bachmann, A.: Applying recursive EM to scene segmentation. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 512–521. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

    Google Scholar 

  10. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M.F., Rother, C.: A comparative study of energy minimization methods for markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Ramalingam, S., Kohli, P., Alahari, K., Torr, P.H.S.: Exact inference in multi-label CRFs with higher-order cliques. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  13. Barth, A., Franke, U.: Estimating the driving state of oncoming vehicles from a moving platform using stereo vision. IEEE Trans. on ITS 10(4), 560–571 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barth, A., Siegemund, J., Meißner, A., Franke, U., Förstner, W. (2010). Probabilistic Multi-class Scene Flow Segmentation for Traffic Scenes. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics