Abstract
The monitoring of the dynamics of stem cells’ growth in culture is important in regenerative medicine. In this paper the method of cells’ images segmentation based on alternating microscopic imaging with bright field (BF) and epifluorescent (EF) images is proposed. The method consists of two principal stages: coarse segmentation of EF images followed by fine segmentation on BF ones. The latter is based on the morphological watershed from markers produced in the first stage. Due to the fact that sequence of EF is shorter than BF one, markers cannot be produced directly for all BF images. In order to create them, an additional step of morphological interpolation of markers is applied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Iwanowski, M., Korzyńska, A.: Detection of the area covered by neural stem cells in cultures using textural segmentation and morphological watershed. In: ASC; Computer Recognition Systems, vol. 3, pp. 543–557. Springer, Heidelberg (2009)
Tse, S., Bradbury, L., Wan, J.W.L., Djambazian, H., Sladek, R., Hudson, T.: A combined watershed and level set method for segmentation of brightfield cell images. In: Proceedings of the SPIE, vol. 7258, pp. 72593G–72593G-10 (2009)
Iwanowski, M.: Metody morfologiczne w przetwarzaniu obraz”ow cyfrowych, AOW EXIT (2009)
Korzyńska, A., Iwanowski, M., Neuman, U., Dobrowolska, E., Hoser, P.: Comparison of the methods of microscopic image segmentation. In: Dossel, S. (ed.) WC 2009, IFMBE Proceedings, vol. 25/IV, pp. 425–428 (2009) ISBN 978-3-642-03897-6 (book), ISSN 1680-0737 (CD)
Selinummi, J., Ruusuvuori, P., Podolsky, I., Ozinsky, A., Gold, E., Yli-Harja, O., Aderem, A., Shmulevich, I.: Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images. PLoS ONE 4(10), e7497 (2009)
Ramoser, H.: Leukocyte segmentation and SVM classification in blood smear images. Machine Graphics and Vision 17(1/2), 187–200 (2008)
Piętka, B.D., Dulewicz, A., Jaszczak P.: Removing artefacts from microscopic Images of cytological smears. Machine Graphics and Vision 17(1/2),131–152 (2008)
Korzyńska, A., Zdunczuk, M.: Clustering as a method of image simplification. In: Pietka, K. (ed.) Inform. Tech. in Biomed., ASC, vol. 47, pp. 365–376 (2008)
Marciniak, A., Nieczkowski, T., Obuchowicz, A.: Color Homogram for segmentation of fine needle biopsy images. Machine Graphics and Vision 17(1/2), 153–165 (2008)
Witkowski, L.: A computer system for cells motility Evaluation. Machine Graphics and Vision 17(1/2), 167–186 (2008)
Markiewcz, T., Osowski, S.: Morphological operations for blood cells extraction from the image of the bone marrow smear. Przeglad Elektrotechniczny 84(5), 24–26 (2008)
Korzyńska, A., Iwanowski, M.: Detection of mitotic cell fraction in stem cells in cultures. In: ASC; Information Technologies in Biomedicine 1, vol. 47, pp. 365–376. Springer, Heidelberg (2008)
Korzyńska, A., Strojny, W., Hoppe, A., Wertheim, D., Hoser, P.: Segmentation of microscope images of living cells. Pattern Anal Applic. 10, 301–319 (2007)
Buzanska, L., Jurga, M., Stachowiak, E.K., Stachowiak, M.K., Domanska-Janik, K.: Neural Stem-like Cell Line Derived from a Nonhematopoietic Population of Human Umbilical Cord Blood. Stem Cell and Development 15, 391–406 (2006)
Boier Marti, I.M., Martineus, D.C.: Identification of spherical virus particles in digitized images of entire electron micrographs. Journal of Structural Biology 120, 146–157 (2005)
Koprowski, R., Wr”oblewski, Z.: Automatic segmentation of biological cell structures based on conditional opening and closing. Machine Graphics and Vision 14, 285–307 (2005)
Sabino, D.M.D., da F Costa, F., Costa, L., Rizzatti, E.G., Zago, M.A.: A texture approach to leukocyte recognition. Real-Time Imaging 10(4), 205–216 (2004)
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2004)
Jiang, K., Liao, Q.M., Dai, S.Y.: A novel white blood cell segmentation scheme using scale-space altering and watershed clustering. In: Proc. Int. Conf. on Machine Learning and Cybernetics, vol. 5, pp. 2820–2825 (2003)
Buzanska, L., Machaj, E.K., Zablocka, B.: Human Cord Blood - Derived Cells Attain Neuronal and Glial Features in Vitro. J. Cell Sci. 115, 2131–2138 (2002)
Periasamy, A.: Methods in Cellular Imaging. Oxford University Press, Oxford (2001)
Comaniciu, D., Meer, P.: Cell image segmentation for diagnostic pathology. In: Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-Art Application in Cardiology, Neurology, Mammography and Pathology, pp. 541–558 (2001)
Iwanowski, M., Serra, J.: The morphological-affine object deformation. In: Mathematical Morphology and its Applications to Signal and Image Processing, pp. 81–90. Kluwer Academic Publishers, Dordrecht (2000)
Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation, Vol. 2, pp. 315–338 (2000)
Serra, J.: Hausdorff distance and interpolations. In: Mathematical morphology and its Applications to Image and Signal Processing, pp. 107–114. Kluwer Academic Publishers, Dordrecht (1998)
Meyer, F.: A morphological interpolation method for mosaic images. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 337–344. Kluwer Academic Publishers, Dordrecht (1996)
Serra, J.: Image analysis and mathematical morphology, vol. 1. Academic Press, London (1983)
Fu, K.S., Mui, J.K.: A survey on image segmentation. Pattern Recognition 13(1), 3–16 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iwanowski, M., Korzyńska, A. (2010). Segmentation of Moving Cells in Bright Field and Epi-Fluorescent Microscopic Image Sequences. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2010. Lecture Notes in Computer Science, vol 6374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15910-7_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-15910-7_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15909-1
Online ISBN: 978-3-642-15910-7
eBook Packages: Computer ScienceComputer Science (R0)