[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Image and Physiological Data Fusion for Guidance and Modelling of Cardiac Resynchronization Therapy Procedures

  • Conference paper
Statistical Atlases and Computational Models of the Heart (STACOM 2010)

Abstract

Cardiac resynchronization therapy (CRT) can be an effective procedure for patients with heart failure but 30% of patients do not respond. This may be partially caused by the sub-optimal placement of the left ventricular (LV) lead. Detailed cardiac anatomy and dyssynchrony information could improve optimal LV lead placement. As a pre-interventional imaging modality, cardiac magnetic resonance (MR) imaging has the potential to provide all the relevant information. Whole heart MR image data can be processed to yield detailed anatomical models including the coronary veins. Cine MR data can be used to measure the motion of the LV to determine which regions are late-activating. Finally, late Gadolinium enhancement imaging can be used to detect regions of scarring. This paper presents a complete software solution for the guidance of CRT using pre-procedural MR data combined with live X-ray fluoroscopy. The platform was evaluated using 7 live CRT cases. For each patient, a detailed cardiac model was generated and registered to the X-ray fluoroscopy using multiple views of a catheter looped in the right atrium. There was complete freedom of movement of the X-ray system and respiratory motion compensation was achieved by tracking the diaphragm. The registration was validated using balloon occlusion coronary venograms. The mean 2D target registration error for 7 patients was 1.3 ± 0.68 mm. All patients had a successful left lead implant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ypenburg, C., Westenberg, J.J., et al.: Noninvasive imaging in cardiac resynchronization therapy–part 1: selection of patients. Pacing Clin. Electrophysiol. 31(11), 1475–1499 (2008)

    Article  Google Scholar 

  2. Bleeker, G.B., Kaandorp, T.A., et al.: Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113(7), 969–976 (2006)

    Article  Google Scholar 

  3. Knecht, S., Skali, H., et al.: Computed tomography-fluoroscopy overlay evaluation during catheter ablation of left atrial arrhythmia. EuroPACE 10, 931–938 (2008)

    Article  Google Scholar 

  4. Duckett, S.G., Ginks, M.R., et al.: A novel cardiac magnetic resonance imaging protocol to guide successful CRT implantation. Case report in Circulation Heart Failure (2010) (in press)

    Google Scholar 

  5. Manzke, R., Bornstedt, A., et al.: Respiratory motion compensated overlay of surface models from cardiac MR on interventional x-ray fluoroscopy for guidance of cardiac resynchronization therapy procedures. In: SPIE Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, vol. 7625 (2010)

    Google Scholar 

  6. Kautzner, J., Riedlbauchová, L., et al.: Technical aspects of implantation of LV lead for cardiac resynchronization therapy in chronic heart failure. PACE 27, 783–790 (2004)

    Google Scholar 

  7. Peters, J., Ecabert, O., et al.: Automatic whole heart segmentation in static magnetic resonance image volumes. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 402–410. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Sermesant, M., Peyrat, J.M., et al.: Towards patient-specific myocardial models of the heart. Heart Fail. Clin. 4(3), 289–301 (2008)

    Article  Google Scholar 

  9. Gao, G., Chinchapatnam, P., et al.: An MRI/CT-based cardiac electroanatomical mapping system with scattered data interpolation algorithm. In: ISBI (2010)

    Google Scholar 

  10. Bi, X., Carr, J.C., et al.: Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magnetic Resonance in Medicine 58, 1–7 (2007)

    Article  Google Scholar 

  11. Yushkevich, P.A., Piven, J., et al.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  12. Knowles, B., Caulfield, D., et al.: Three-dimensional visualization of acute radiofrequency ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans. Biomedical Engineering 57(6), 1467–1475 (2010)

    Article  Google Scholar 

  13. Rhode, K.S., Hill, D.L.G., et al.: Registration and tracking to integrate X-ray and MR images in an XMR facility. IEEE Transactions on Medical Imaging 24(11), 810–815 (2003)

    Google Scholar 

  14. Rhode, K.S., Sermesant, M., et al.: A system for real-time XMR guided cardiovascular intervention. IEEE Trans. Med. Imaging 24, 500–513 (2005)

    Article  Google Scholar 

  15. Wang, Y., Riederer, S.J., et al.: Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magnetic Resonance in Medicine 33(5), 713–719 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, Y. et al. (2010). Image and Physiological Data Fusion for Guidance and Modelling of Cardiac Resynchronization Therapy Procedures. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15835-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15834-6

  • Online ISBN: 978-3-642-15835-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics