Abstract
This paper presents a method for approximating the Pareto front of a given function using Artificial Immune Networks. The proposed algorithm uses cloning and mutation to create local subsets of the Pareto front, and combines elements of these local fronts in a way that maximizes the diversity. The method is compared against SPEA and NSGA-II in a number of problems from the ZDT test suite, yielding satisfactory results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1992)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. IEEE Trans. Evol. Comput. 8(2), 173–195 (2000)
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. dissertation, Swiss Federal Institute of Technology (1999)
Garrett, S.M.: How Do We Evaluate Artificial Immune Systems? MIT Press Evolutionary Computation 13(2), 145–178 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lanaridis, A., Stafylopatis, A. (2010). An Artificial Immune Network for Multi-objective Optimization. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-15822-3_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15821-6
Online ISBN: 978-3-642-15822-3
eBook Packages: Computer ScienceComputer Science (R0)