Abstract
It is on human nature to seek for recommendation before any purchase or service request. This trend increases along with the enormous information, products and services evolution, and becomes more and more challenging to create robust, and scalable recommender systems that are able to perform in real time. A popular approach for increasing the scalability and decreasing the time complexity of recommender systems, involves user clustering, based on their profiles and similarities. Cluster representatives make successful recommendations for the other cluster members; this way the complexity of recommendation depends only on cluster size. Although classic clustering methods have been often used, the requirements of user clustering in recommender systems, are quite different from the typical ones. In particular, there is no reason to create disjoint clusters or to enforce the partitioning of all the data. In order to eliminate these issues we propose a data clustering method that is based on genetic algorithms. We show, based on findings, that this method is faster and more accurate than classic clustering schemes. The use of clusters created, based on the proposed method, leads to significantly better recommendation quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Braak, P.t., Abdullah, N., Xu, Y.: Improving the Performance of Collaborative Filtering Recommender Systems through User Profile Clustering. In: The 2009 IEEE/ACM Int’l Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 03, pp. 147–150. IEEE Computer Society, Washington (2009)
O’Donovan, J., Smyth, B.: Trust in recommender systems. In: 10th Int’l Conference on Intelligent User Interfaces (IUI 2005), pp. 167–174. ACM, New York (2005)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 226–231 (1996)
Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval 4(2), 133–151 (2001)
Goldberg, D.: Genetic Algorithms. Addison-Wesley, Reading (1989)
The GroupLens Research Project, http://www.grouplens.org/
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall Publishers, Englewood Cliffs (1988)
Kim, K., Ahn, H.: A recommender system using GA K-means clustering in an online shopping market. Expert Systems with Applications: An International Journal 34(2), 1200–1209 (2008)
Min, S.-H., Han, I.: Dynamic Fuzzy Clustering for Recommender Systems. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 480–485. Springer, Heidelberg (2005)
Truong, K., Ishikawa, F., Honiden, S.: Improving Accuracy of Recommender System by Item Clustering. IEICE - Transactions on Information and Systems E90-D(9), 1363–1373 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Georgiou, O., Tsapatsoulis, N. (2010). Improving the Scalability of Recommender Systems by Clustering Using Genetic Algorithms. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-15819-3_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15818-6
Online ISBN: 978-3-642-15819-3
eBook Packages: Computer ScienceComputer Science (R0)