Abstract
This study examines Probabilistic Neural Network (PNNs) models in terms of their classification efficiency in the Vesicoureteral Reflux (VUR) disease. PNNs were developed for the estimation of VUR risk factor. The obtained results lead to the conclusion that in this case the PNNs can be potentially used towards VUR risk prediction. There is a redundancy in the diagnostic factors, so pruned PNN was used in order to evaluate the contribution of each one. Moreover, the Receiver Operating Characteristic (ROC) analysis was used in order to select the most significant factors for the estimation of VUR risk. The results of the pruned PNN model were found in accordance with the ROC analysis. The obtained results may support that a number of the diagnostic factors that are recorded in patient’s history may be omitted with no compromise to the fidelity of clinical evaluation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McGuire, W., Tandom, A., Allred, D., Chamnes, G., Clark, G.: How to Use Orognostic Factors in Axillary Node-negative Breast Cancer Patients. J. Natl. Cancer Inst. 82, 1006–1015 (1990)
Papik, K., Molnar, B., Schaefer, R., Dombovari, Z., Tulassay, Z., Feher, J.: Application of Neural Networks in Medicine - A Review. Med. Sci. Monit., 538–546 (1998)
Jigneshkumar, P., Ramesh, G.: Applications of Artificial Neural Networks in Medical Science. Current Clinical Pharmacology 2, 217–226 (2007)
Anagnostou, T., Remzi, M., Djavan, B.: Artificial Neural Networks for Decision-Making in Urologic Oncology. Reviews in Urology 5, 15–21 (2003)
Mantzaris, D., Anastassopoulos, G., Tsalkidis, A., Adamopoulos, A.: Intelligent Prediction of Vesicoureteral Reflux Disease. WSEAS Trans. Systems 9, 1440–1449 (2005)
Knudsona, M., Austina, C., Walda, M., Makhloufb, A., Niederb, C.: Computational Model for Predicting the Chance of Early Resolution in Children with Vesicoureteral Reflux. The Journal of Urology 178, 1824–1827 (2007)
Shiraishia, K., Matsuyamaa, H., Neppleb, K., Waldb, M., Niederbergerc, C.: Validation of a Prognostic Calculator for Prediction of Early Vesicoureteral Reflux Resolution in Children. The Journal of Urology 182, 687–691 (2009)
Papadopoulos, H., Gammerman, A., Vovk, V.: Confidence Predictions for the Diagnosis of Acute Abdominal Pain. In: AIAI 2009, pp. 175–184 (2009)
Mantzaris, D., Anastassopoulos, G., Iliadis, L., Adamopoulos, A.: An Evolutionary Technique for Medical Diagnosis Risk Factor Selection. IFIP International Federation for Information Processing 296, 195–203 (2009)
Mantzaris, D., Anastassopoulos, G., Lymperopoulos, K.: Medical Disease Prediction Using Artificial Neural Networks. In: 8th IEEE International Conference on BioInformatics and Bio.Engineering (2008)
Tjoa, M., Dutt, D., Lim, Y., Yau, B., Kugean, R., Krishnan, S., Chan, K.: Artificial Neural Networks for the Classification of Cardiac Patient States Using ECG and Blood Pressure Data. In: Proceedings of the Seventh Australian and New Zealand Intelligent Systems Conference, pp. 323–327 (2001)
Mantzaris, D., Anastassopoulos, G., Adamopoulos, A., Stephanakis, I., Kambouri, K., Gardikis, S.: Selective Clinical Estimation of Childhood Abdominal Pain Based on Pruned Artificial Neural Networks. In: Proceedings of the 3rd WSEAS International Conference on Cellular and Molecular Biology, Biophysics and Bioengineering, pp. 50–55 (2007)
Streiner, D., Cairney, J.: What’s Under the ROC? An Introduction to Receiver Operating Characteristics Curves. The Canadian Journal of Psychiatry 52, 121–128 (2007)
Nelson, C., Koo, H.: Vesicoureteral Reflux (2005), http://www.emedicine.com/ped/topic2750.htm
Youngerman-Cole, S.: Vesicoureteral Reflux (2004), http://www.uhseast.com/147424.cfm
Thompson, M., Simon, S., Sharma, V., Alon, U.S.: Timing of Follow-Up Voiding Cystourethrogram in Children with Primary Vesicoureteral Reflux: Development and Application of a Clinical Algorithm. Pediatrics 115, 426–434 (2005)
Orr, R.: Use of a Probabilistic Neural Network to Estimate the Risk of Mortality after Cardiac Surgery. J. Medical Decision Making 17, 178–185 (1997)
Parzen, E.: On Estimation of a Probability Density Function and Mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)
Iliadis, L.: Intelligent Information Systems and Applications in Risk Estimation. Stamoulis Publishing, Thessaloniki (2007)
Howard, D., Mark, B.: Neural Network Toolbox User’s Guide, The Math Works, Inc. (2008), http://www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mantzaris, D., Anastassopoulos, G., Iliadis, L., Tsalkidis, A., Adamopoulos, A. (2010). A Probabilistic Neural Network for Assessment of the Vesicoureteral Reflux’s Diagnostic Factors Validity. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-15819-3_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15818-6
Online ISBN: 978-3-642-15819-3
eBook Packages: Computer ScienceComputer Science (R0)