Abstract
Spike timing dependent plasticity (STDP) requires the temporal association of presynaptic and postsynaptic action potentials (APs). However, some synapses in the CA1 region of the hippocampus are suprisingle unreliable at signaling the arrival of single spikes to the postsynaptic neuron [4]. In such unreliable synapses pairing of excitatory postsynaptic potentials (EPSPs) and single APs at low frequencies is ineffective at generating plasticity [2], [3]. A recent computational study [7] has shown that the shape of the STDP curve strongly depends on the burst interspike interval in the presence/absence of inhibition when a presynaptic dendritic burst and a postsynaptic somatic spike were paired together. In this study, we investigate via computer simulations the conditions under which STDP is affected when now a high frequency somatic burst instead of a single spike is paired with another dendritic spike. We show that during such pairing conditions in the absence of inhibition a symmetric STDP profile with a distinct positive LTP region is evident at 10-30ms interstimulus interval and flat LTD tails at all other interstimulus intervals. The symmetry is preserved at all burst interspike intervals. When inhibition is present, the STDP profile shape into a Mexican hat shaped one or an inverted symmetrical one with flat LTP tails.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hebb, D.O.: The organization of behavior. John Wiley, New York (1949)
Kampa, B.M., Letzkus, J.J., Stuart, G.J.: Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J. Physiol. 574(1), 283–290 (2006)
Letzkus, J.J., Kampa, B.M., Stuart, G.J.: Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J. Neurosci. 26(41), 10420–10429 (2006)
Allen, C., Stevens, C.F.: An evaluation of causes for unreliability of synaptic transmission. Proc. Natl. Acad. Sci. U.S.A. 91(22), 10380–10383 (1994)
Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)
Cutsuridis, V., Cobb, S., Graham, B.P.: A Ca2 + dynamics model of the STDP symmetry-to-asymmetry transition in the CA1 pyramidal cell of the hippocampus. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp. 627–635. Springer, Heidelberg (2008)
Cutsuridis, V., Cobb, S., Graham, B.P.: How Bursts Shape the STDP Curve in the Presence/Absence of GABA Inhibition. In: Alippi, C., et al. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 229–238. Springer, Heidelberg (2009)
Cutsuridis, V., Cobb, S., Graham, B.P.: Modelling the STDP Symmetry-to-Asymmetry Transition in the Presence of GABAergic Inhibition. Neural Network World 19(5), 471–481
Rubin, J.E., Gerkin, R.C., Bi, G.Q., Chow, C.C.: Calcium time course as signal for spike-timing-dependent plasticity. J. Neurophysiol. 93, 2600–2613 (2005)
Aihara, T., Abiru, Y., Yamazaki, Y., Watanabe, H., Fukushima, Y., Tsukada, M.: The relation between spike-timing dependent plasticity and Ca2 + dynamics in the hippocampal CA1 network. Neuroscience 145(1), 80–87 (2007)
Tsukada, M., Aihara, T., Kobayashi, Y., Shimazaki, H.: Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15(1), 104–109 (2005)
Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M., Kato, K.: Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584–589 (2000)
Jarsky, T., Roxin, A., Kath, W.L., Spruston, N.: Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8(12), 1667–1676 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cutsuridis, V. (2010). Action Potential Bursts Modulate the NMDA-R Mediated Spike Timing Dependent Plasticity in a Biophysical Model. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15819-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15818-6
Online ISBN: 978-3-642-15819-3
eBook Packages: Computer ScienceComputer Science (R0)