[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Compositional Abstraction of PEPA Models for Transient Analysis

  • Conference paper
Computer Performance Engineering (EPEW 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6342))

Included in the following conference series:

  • 436 Accesses

Abstract

Stochastic process algebras such as PEPA allow complex stochastic models to be described in a compositional way, but this leads to state space explosion problems. To combat this, there has been a great deal of work in developing techniques for abstracting Markov chains. In particular, abstract — or interval — Markov chains allow us to aggregate states in such a way as to safely bound transient probabilities of the original Markov chain. Whilst we can apply this technique directly to a PEPA model, it requires us to obtain the CTMC of the model, whose state space may be too large to construct explicitly.

In this paper, we present a compositional application of abstract Markov chains to PEPA, based on a Kronecker representation of the underlying CTMC. This can be used to bound probabilistic reachability properties in the Continuous Stochastic Logic (CSL), and we have implemented this as part of the PEPA plug-in for Eclipse. We conclude with an example application — analysing the performance of a wireless network — and use this to illustrate the impact of the choice of states to aggregate on the precision of the bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. De Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford (1998)

    Google Scholar 

  2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. Theoretical Computer Science 345(1), 2–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dayar, T., Stewart, W.J.: Quasi-lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains. SIAM Journal on Matrix Analysis and Applications 18(2), 482–498 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Fourneau, J.-M., Lecoz, M., Quessette, F.: Algorithms for an irreducible and lumpable strong stochastic bound. Linear Algebra and its Applications 386, 167–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  8. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS 1991: Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science, Amsterdam, The Netherlands, pp. 266–277 (1991)

    Google Scholar 

  11. Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for stochastic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 195–211. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  14. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York (1994)

    Book  MATH  Google Scholar 

  15. Simon, H.A., Ando, A.: Aggregation of variables in dynamic systems. Econometrica 29(2), 111–138 (1961)

    Article  MATH  Google Scholar 

  16. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse plugin. SIGMETRICS Performance Evaluation Review 36(4), 28–33 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, M.J.A. (2010). Compositional Abstraction of PEPA Models for Transient Analysis. In: Aldini, A., Bernardo, M., Bononi, L., Cortellessa, V. (eds) Computer Performance Engineering. EPEW 2010. Lecture Notes in Computer Science, vol 6342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15784-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15784-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15783-7

  • Online ISBN: 978-3-642-15784-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics