Abstract
This study investigates a new parameterization of deformation fields for image registration. Instead of standard displacements, this parameterization describes a deformation field with its transformation Jacobian and curl of end velocity field. It has two important features which make it appealing to image registration: 1) it relaxes the need of an explicit regularization term and the corresponding ad hoc weight in the cost functional; 2) explicit constraints on transformation Jacobian such as topology preserving and incompressibility constraints are straightforward to impose in a unified framework. In addition, this parameterization naturally describes a deformation field in terms of radial and rotational components, making it especially suited for processing cardiac data. We formulate diffeomorphic image registration as a constrained optimization problem which we solve with a step-then-correct strategy. The effectiveness of the algorithm is demonstrated with several examples and a comprehensive evaluation of myocardial delineation over 120 short-axis cardiac cine MRIs acquired from 20 subjects. It shows competitive performance in comparison to two recent segmentation based approaches.
Chapter PDF
Similar content being viewed by others
Keywords
- Image Registration
- Constrain Optimization Problem
- Deformation Field
- Rotational Component
- Incompressibility Constraint
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)
Liao, G., Anderson, D.: A New Approach to Grid Generation. Applicable Analysis 44(3), 285–298 (1992)
Liu, J.: New Developments of the Deformation Method. PhD dissertation. Department of Mathematics, The University of Texas at Arlington (2006)
Zhou, X.: On Uniqueness Theorem of a Vector Function. Progress in Electromagnetics Research 65, 93–102 (2006)
Jiang, B.-N.: The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer, Heidelberg (1998)
Ben Ayed, I., Li, S., Ross, I.: Embedding Overlap Priors in Variational Left Ventrical Tracking. IEEE Transactions on Medical Imaging 28(12), 1902–1913 (2009)
Ben Ayed, I., Punithakumar, K., Li, S., Islam, A.: Left Ventricle Segmentation via Graph Cut Distribution Matching. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 901–909. Springer, Heidelberg (2009)
Lynch, M., Ghita, O., Whelan, P.F.: Segmentation of the Left Ventricle of the Heart in 3-D+t MRI Data Using an Optimized Nonrigid Temporal Model. IEEE Trans. on Medical Imaging 27(2), 195–203 (2008)
Jolly, M.-P.: Automatic Segmentation of the Left Ventricle in Cardiac MR and CT Images. International Journal of Computer Vision 70(2), 151–163 (2006)
Ledesma-Carbayo, M., et al.: Spatio-Temporal Nonrigid Registration for Ultrasound Cardiac Motion Estimation. IEEE Transactions on Medical Imaging 24(9), 1113–1126 (2005)
Punithakumar, K., et al.: Heart Motion Abnormality Detection via an Information Measure and Bayesian Filtering. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 373–380. Springer, Heidelberg (2009)
Noble, N., et al.: Myocardial Delineation via Registration in a Polar Coordinate System. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 651–658. Springer, Heidelberg (2002)
Beg, M., Miller, M., Trouve, A., Younes, L.: Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphism. International Journal of Computer Vision 61(2), 139–157 (2005)
Rueckert, D., et al.: Diffeomorphic Registration Using B-Splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)
Ashburner, J.: A Fast Diffeomorphic Image Registration Algorithm. NeuroImage 38, 95–113 (2007)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-Parametric Diffeomorphic Image Registration with the Demons Algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)
Saddi, K., Chefd’hotel, C., Cheriet, F.: Large deformation registration of contrast-enhanced images with volume-preserving constraint. In: Proc. of SPIE Medical Imaging, vol. 6512(1) (2007)
Rohlfing, T.: Transformation model and constraints cause bias in statistics on deformation fields. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 207–214. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Hm., Goela, A., Garvin, G.J., Li, S. (2010). A Parameterization of Deformation Fields for Diffeomorphic Image Registration and Its Application to Myocardial Delineation . In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15705-9_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-15705-9_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15704-2
Online ISBN: 978-3-642-15705-9
eBook Packages: Computer ScienceComputer Science (R0)