Abstract
Measuring the diffusion properties of crossing fibers is very challenging due to the high number of model parameters involved and the intrinsically low SNR of Diffusion Weighted MR Images. Noise filtering aims at suppressing the noise while pertaining the data distribution. We propose an adaptive version of the Linear Minimum Mean Square Error (LMMSE) estimator to achieve this. Our filter applies an adaptive filtering kernel that is based on a space-variant estimate of the noise level and a weight consisting of the product of a Gaussian kernel and the diffusion similarity with respect to the central voxel. The experiments show that the data distribution after filtering is still Rician and that the diffusivity values are estimated with a higher precision while pertaining an equal accuracy. We demonstrate on brain data that our adaptive approach performs better than the initial LMMSE estimator.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
den Dekker, A.J., Sijbers, J.: Advanced Image Processing in Magnetic Resonance Imaging. Signal Processing and Communications, vol. 27, pp. 85–143. CRC Press, Taylor & Francis Group, LLC, Boca Raton (2005)
Aja-Fernandez, S., Niethammer, M., Kubicki, M., Shenton, M., Westin, C.F.: Restoration of DWI data using a rician LMMSE estimator. IEEE Trans. Med. Im. 27, 1389–1403 (2008)
Ding, Z., Gore, J., Anderson, A.: Reduction of Noise in Diffusion Tensor Images Using Anisotropic Smoothing. Magn. Reson. Med. 53, 486–490 (2005)
Andersson, J.L.: Maximum a posteriori estimation of diffusion tensor parameters using a rician noise model: Why, how and but. Neuroimage 42, 1340–1356 (2008)
Landman, B., Bazin, P.L., Prince, J.: Diffusion tensor estimation by maximizing Rician likelihood. In: IEEE 11th ICCV, pp. 2433–2440 (2007)
Fillard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing, and fiber tracking with log-euclidean metrics. IEEE Transactions on Medical Imaging 26, 1472–1482 (2007)
Basu, S., Fletcher, T., Whitaker, R.: Rician noise removal in diffusion tensor MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 117–125. Springer, Heidelberg (2006)
Martin-Fernandez, M., Munoz-Moreno, E., Cammoun, L., Thiran, J.P., Westin, C.F., Alberola-Lopez, C.: Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D regularization of DWI data. Med. Im. Anal. 13, 19–35 (2009)
Bansal, R., Staib, L., Xu, D., Laine, A., Liu, J., Peterson, B.: Using perturbation theory to reduce noise in diffusion tensor fields. Med. Im. Anal. 13, 580–597 (2009)
Caan, M., Khedoe, H., Poot, D., den Dekker, A., Olabarriaga, S., Grimbergen, C., van Vliet, L., Vos, F.: Estimation of diffusion properties in crossing fiber bundles. IEEE Trans. Med. Im. (2010) (in press)
van Kempen, G., van den Brink, N., van Vliet, L., van Ginkel, M., Verbeek, P., Blonk, H.: The application of a local dimensionality estimator to the analysis of 3d microscopic network structures. In: Proc. 11th Scandinavian Conference on Image Analysis (SCIA), pp. 447–455 (1999)
Mangin, J.F., Poupon, C., Clark, C., Bihan, D.L., Bloch, I.: Eddy-current distortion correction and robust tensor estimation for MR diffusion imaging. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 186–193. Springer, Heidelberg (2001)
Tristán-Vega, A., Aja-Fernández, S.: DWI filtering using joint information for DTI and HARDI. Medical Image Analysis (2009)
Moreno, E.M., Fernández, M.M.: Characterization of the similarity between diffusion tensors for image registration. Computers in Biology and Medicine 39, 251–265 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caan, M. et al. (2010). Adaptive Noise Filtering for Accurate and Precise Diffusion Estimation in Fiber Crossings. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15705-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-15705-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15704-2
Online ISBN: 978-3-642-15705-9
eBook Packages: Computer ScienceComputer Science (R0)