[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Segmentation for SAR Image Based on a New Spectral Clustering Algorithm

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

A new spectral clustering (SC) algorithm with Nyström method is proposed for SAR image segmentation in this paper. The proposed algorithm differs from previous approaches in that not only with Nyström method are employed for alleviating the computational and storage burdens of the SC algorithm, but also a new similarity function is constructed by combining the pixel value and the spatial location of each pixel to depict the intrinsic structure of the original SAR image better. Our algorithm and the classic spectral clustering algorithm with Nyström method are evaluated using the real-world SAR images. The results demonstrate the running time and the error rate of the proposed approach and the classic spectral clustering algorithm with Nyström method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Quan, J.: Multiscale Segmentation for SAR image based on Neural Networks. Tianjin University of Technology, D. Tianjin (2007)

    Google Scholar 

  2. Zhang, X., Jiao, L., Liu, F., Bo, L., Gong, M.: Spectral Clustering Ensemble Applied to SAR Image Segmentation. J. IEEE Trans. Geosci. Remote Sens. 46(7), 2126–2136 (2008)

    Article  Google Scholar 

  3. Samadani, R.: A finite mixtures algorithm for finding proportions in SAR images. IEEE Trans. Image Process. 4(8), 1182–1185 (1995)

    Article  Google Scholar 

  4. Dong, Y., Forster, B.C., Milne, A.K.: Comparison of radar image segmentation by Gaussian-and Gamma-Markov random field models. Int. J. Remote Sens. 24(4), 711–722 (2003)

    Article  Google Scholar 

  5. Deng, H., Clausi, D.A.: Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Trans. Geosci. Remote Sens. 43(3), 528–538 (2005)

    Article  Google Scholar 

  6. Lemaréchal, C., Fjørtoft, R., Marthon, P., Cubero-Castan, E., Lopes, A.: SAR image segmentation by morphological methods. In: Proc. SPIE, vol. 3497, pp. 111–121 (1998)

    Google Scholar 

  7. Ogor, B., Haese-coat, V., Ronsin, J.: SAR image segmentation by mathematical morphology and texture analysis. In: Proc. IGARSS, pp. 717–719 (1996)

    Google Scholar 

  8. Lee, J.S., Jurkevich, I.: Segmentation of SAR images. IEEE Trans. Geosci. Remote Sens. 27(6), 674–680 (1989)

    Article  Google Scholar 

  9. Zaart, A.E., Ziou, D., Wang, S., Jiang, Q.: Segmentation of SAR images using mixture of gamma distribution. Pattern Recognit. 35(3), 713–724 (2002)

    Article  MATH  Google Scholar 

  10. Kersten, P.R., Lee, J.-S., Ainsworth, T.L.: Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 43(3), 519–527 (2005)

    Article  Google Scholar 

  11. Chumsamrong, W., Thitimajshima, P., Rangsanseri, Y.: Synthetic aperture radar (SAR) image segmentation using a new modified fuzzy c-means algorithm. In: Proc. IEEE Symp. Geosci., Remote Sens., Honolulu, pp. 624–626 (2000)

    Google Scholar 

  12. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. J. IBM J. Res. Develop. (17), 420–425 (1973)

    Google Scholar 

  13. Fiedler, M.: Algebraic connectivity of graphs. J. Czech Math J. (23), 298–305 (1973)

    Google Scholar 

  14. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. J. IEEE Transactions on Computed-Aided Design 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  15. Chan, P.K., Schlag, M.D.F., Zien, J.Y.: Spectral k-way ratio-cut partitioning and clustering. J. IEEE Trans. Computed-Aided Design Integr. Circuits Syst. 13(9), 1088–1096 (1994)

    Article  Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. J. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and an algorithm C. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, MA (2002)

    Google Scholar 

  18. Belongie, S., Fowlkes, C., Chung, F., Malik, J.: Spectral partitioning with indefinite kernels using the Nyström extension. In: Proc. European Conf. Computer Vision (2002)

    Google Scholar 

  19. Chung, F.R.K.: Spectral Graph Theory. Am. Math. Soc. (1997)

    Google Scholar 

  20. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nyström method. J. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004)

    Article  Google Scholar 

  21. Zhang, K., Kwok, J.T.: Density-Weighted Nyström Method for Computing Large Kernel Eigensystems. Neural Computation 21(1), 121–146 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, LL., Wen, XB., Gao, XX. (2010). Segmentation for SAR Image Based on a New Spectral Clustering Algorithm . In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics