Abstract
Predictive models find wide use in marketing for customer segmentation, targeting, etc. Models can be developed to different objectives, as defined through the dependent variable of interest. While standard modeling approaches embody single performance objectives, actual marketing decisions often need consideration of multiple performance criteria. Multiple objective problems typically characterize a range of solutions, none of which dominate the others with respect to the different objectives - these specify the Pareto-frontier of non-dominated solutions, each offering a different level of tradeoff. This chapter examines the use of evolutionary computation to obtain a set of such non-dominated models. An application using a real-life problem and data-set is presented, with results highlighting how such multi-objective models can yield advantages over traditional approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berry, M.J.A., Linoff, G.S.: Data Mining Techniques for Marketing, Sales and Customer Relationship Management. John Wiley & Sons, Chichester (2004)
Becerra, R.L., Santana-Quintero, L.V., Coello, C.C.: Knowledge Incorporation in Multi-objective Evolutionary Algorithms. In: Ghosh, A., Dehuri, S., Ghosh, S. (eds.) Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence, vol. 98, pp. 23–46. Springer, Heidelberg (2008)
Bhattachryya, S.: Direct Marketing Performance Modeling using Genetic Algorithms. INFORMS Journal of Computing 11(13), 248–257 (1999)
Bhattacharyya, S.: Evolutionary algorithms in data mining: Multi-objective performance modeling for direct marketing. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Massachusetts, pp. 465–473 (2000)
Casillas, J., Martínez-López, F.J.: Mining Uncertain Data with Multiobjective Genetic Fuzzy Systems to be Applied in Consumer Behaviour Modeling. Expert Systems with Applications 36(2), 1645–1659 (2009)
Coello, C.C.: An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys 32(2), 109–143 (2000)
Coello, C.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer, New York (2006)
De La Iglesia, B., Richards, G., Philpott, M.S., Rayward-Smith, V.J.: The Application and Effectiveness of a Multi-objective Metaheuristic Algorithm for Partial Classification. European Journal of Operational Research 169(3), 898–917 (2006)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001)
Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)
Dehuri, S., Ghosh, S., Ghosh, A.: Genetic Algorithm for Optimization of Multiple Objectives in Knowledge Discovery from Large Databases. In: Ghosh, A., Dehuri, S., Ghosh, S. (eds.) Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence, vol. 98, pp. 1–22. Springer, Heidelberg (2008)
Dehuri, S., Jagadev, A.K., Ghosh, A., Mall, R.: Multi-objective Genetic Algorithm for Association Rule Mining using a Homogeneous Dedicated Cluster of Workstations. American Journal of Applied Sciences 88, 2086–2095 (2006)
Dehuri, S., Mall, R.: Predictive and Comprehensible Rule Discovery using a Multi-objective Genetic Algorithm. Knowledge-Based Systems 19(6), 413–421 (2006)
Evett, M., Fernandez, T.: Numeric Mutation Improves the Discovery of Numeric Constants in Genetic Program. In: Koza, J.R., et al. (eds.) Proceedings of the Third Annual Genetic Programming Conference, Wisconsin, Madison, Morgan Kaufmann, San Francisco (1998)
Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multi-Objective Optimization. Evolutionary Computation 3(1), 1–16 (1995)
Freitas, A.A.: A Critical Review of Multi-objective Optimization in Data Mining: a Position Paper. SIGKDD Explorations. Newsletter 6(2), 77–86 (2004)
Freitas, A.A., Pappa, G.L., Kaestner, C.A.A.: Attribute Selection with a Multi-objective Genetic Algorithm. In: Proceedings of the 16th Brazilian Symposium on Artificial Intelligence, pp. 280–290. Springer, Heidelberg (2002)
Ghosh, A., Nath, B.: Multi-objective Rule mining using Genetic Algorithms. Information Sciences 163(1-3), 123–133 (2004)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)
Goldberg, D.E., Richardson, K.: Genetic algorithms with Sharing for Multi-modal Function Optimization. In: Proceedings of the 2nd International Conference on Genetic Algorithm, pp. 41–49 (1987)
Hand, D.J.: Construction and Assessment of Classification Rules. John Wiley and Sons, Chichester (1997)
Handl, J., Knowles, J.: Multiobjective Clustering with Automatic Determination of the Number of Clusters, Technical Report No. TR-COMPSYSBIO-2004-02, UMIST, Department of Chemistry (August 2004)
Kaya, M.: Multi-objective Genetic Algorithm based Approaches for Mining Optimized Fuzzy Association Rules. Soft Computing: A Fusion of Foundations, Methodologies and Applications 10(7), 578–586 (2006)
Kim, D.: Structural Risk Minimization on Decision Trees using an Evolutionary Multiobjective Algorithm. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 338–348. Springer, Heidelberg (2004)
Kim, Y., Street, N.W.: An Intelligent System for Customer Targeting: a Data Mining Approach. Decision Support Systems 37(2), 215–228 (2004)
Kim, Y., Street, W.N., Menczer, F.: Feature Selection in Unsupervised Learning via Evolutionary Search. In: Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2000), pp. 365–369 (2000)
Knowles, J.D., Corne, D.W.: Approximating the Non-dominated Front using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 49–172 (2000)
Kollat, J.B., Reed, P.M.: The value of online adaptive search: A performance comparison of NSGAII, ε-NSGAII and εMOEA. In: Coello, C.C., Aguirre, A.H., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 386–398. Springer, Heidelberg (2005)
Kollat, J.B., Reed, P.M.: A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO). Environmental Modelling & Software 22(12), 1691–1704 (2007)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1993)
Louis, S.J., Rawlins, G.J.E.: Pareto-Optimality, GA-Easiness and Deception. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 118–123 (1993)
Massand, B., Piatetsky-Shapiro, G.: A Comparison of Different Approaches for Maximizing the Business Payoffs of Prediction Models. In: Simoudis, E., Han, J.W., Fayyad, U. (eds.) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 195–201 (1996)
Menczer, F., Degeratu, M., Street, N.W.: Efficient and Scalable Pareto Optimization by Evolutionary Local Selection Algorithms. Evolutionary Computation 8(2), 223–247 (2000)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 2nd edn. Springer, Heidelberg (1994)
Murty, M.N., Babaria, R., Bhattacharyya, C.: Clustering Based on Genetic Algorithms. In: Ghosh, A., Dehuri, S., Ghosh, S. (eds.) Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence, vol. 98, pp. 137–159. Springer, Heidelberg (2008)
Pappa, G.L., Freitas, A.A.: Evolving Rule Induction algorithms with Multi-objective Grammar-based Genetic Programming. Knowledge and Information Systems 19(3), 283–309 (2009)
Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M.: Some Guidelines for Genetic Algorithms with Penalty Functions. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on genetic Algorithms, pp. 191–197 (1989)
Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)
Shaw, K.J., Nortcliffe, A.L., Thompson, M., Love, J., Fonseca, C.M., Fleming, P.J.: Assessing the Performance of Multiobjective Genetic Algorithms for Optimization of a Batch Process Scheduling Problem. In: Angeline, P. (ed.) Congress on Evolutionary Computation, pp. 37–45. IEEE Press, Piscataway (1999)
Sikora, R., Piramuthu, S.: Efficient Genetic Algorithm Based Data Mining Using Feature Selection with Hausdorff Distance. Information Technology and Management 6(4), 315–331 (2005)
Thilagam, P.S., Ananthanarayana, V.S.: Extraction and Optimization of Fuzzy Association Rules using Multi-objective Genetic Algorithm. Pattern Analysis and Applications 11(2), 159–168 (2008)
Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithm Test Suites. In: Carroll, J., Haddad, H., Oppenheim, D., Bryant, B., Lamont, G.B. (eds.) Proceedings of the 1999 ACM Symposium on Applied Computing, New York, pp. 351–357 (1999)
Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-Art. Evolutionary Computation 8(2), 125–147 (2000)
Zhang, Y., Bhattacharyya, S.: Genetic Programming in Classifying Large-scale Data: an Ensemble Method. Information Sciences 163(1-3), 85–101 (2004)
Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)
Zitzler, E., Thiele, L.: Multi-objective Evolutionary Algorithms: a Comparative Case study and Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bhattacharyya, S. (2010). Predictive Modeling on Multiple Marketing Objectives Using Evolutionary Computation. In: Casillas, J., Martínez-López, F.J. (eds) Marketing Intelligent Systems Using Soft Computing. Studies in Fuzziness and Soft Computing, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15606-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-15606-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15605-2
Online ISBN: 978-3-642-15606-9
eBook Packages: EngineeringEngineering (R0)