[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Data Fusion to Enrich Customer Databases with Survey Data for Database Marketing

  • Chapter
Marketing Intelligent Systems Using Soft Computing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 258))

Abstract

Many data mining papers start with claiming that the exponential growth in the amount of data provides great opportunities for data mining. Reality can be different though. In real world applications, the number of sources over which this information is fragmented can grow at an even faster rate, resulting in barriers to widespread application of data mining and missed business opportunities. Let us illustrate this paradox with a motivating example from database marketing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, K., Harris, P., O’Brien, J.: Data fusion: An appraisal and experimental evaluation. Journal of the Market Research Society 31(2), 152–212 (1989)

    Google Scholar 

  2. Barr, R., Turner, J.: A new, linear programming approach to microdata file merging. In: 1978 Compendium of Tax Research. Office of Tax Analysis (1978)

    Google Scholar 

  3. Budd, E.: The creation of a microdata file for estimating the size distribution of income. Review of Income and Wealth 17, 317–333 (1971)

    Article  Google Scholar 

  4. Chapman, P., Clinton, J., Khabaza, T., Reinartz, T., Wirth, R.: The crisp-dm process model. Tech. rep., Crisp Consortium (1999), http://www.crisp-dm.org/

  5. D’Orazio, M., Di Zio, M., Scanu, M.: Statistical Matching: Theory and Practice. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  6. Flores, G.A., Albacea, E.A.: A genetic algorithm for constrained statistical matching. In: 10th National Convention on Statistics (NCS), Manila, Phillipines (2007)

    Google Scholar 

  7. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  8. Jephcott, J., Bock, T.: The application and validation of data fusion. Journal of the Market Research Society 40(3), 185–205 (1998)

    Google Scholar 

  9. Kamakura, W., Wedel, M.: Statistical data fusion for cross-tabulation. Journal of Marketing Research 34(4), 485–498 (1997)

    Article  Google Scholar 

  10. Kum, H., Masterson, T.: Statistical matching using propensity scores: Theory and application to the levy institute measure of economic well-being. Working paper no. 535, The Levy Economics Institute of Bard College (2008)

    Google Scholar 

  11. Little, R., Rubin, D.: Statistical analysis with missing data. John Wiley and Sons, Chichester (1986)

    Google Scholar 

  12. Maat, B.: The need for fusing head and neck cancer data. can more data provide a better data mining model for predicting survivability of head and neck cancer patients? Master’s thesis, ICT in Business, Leiden Institute of Advanced Computer Science. Leiden University, The Netherlands (2006)

    Google Scholar 

  13. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4), 525–533 (1993)

    Article  Google Scholar 

  14. Nguyen, D.H., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: IJCNN International Joint Conference on Neural Networks, vol. 3, pp. 21–26 (1990)

    Google Scholar 

  15. O’Brien, S.: The role of data fusion in actionable media targeting in the 1990’s. Marketing and Research Today 19, 15–22 (1991)

    Google Scholar 

  16. Paass, G.: Statistical match: Evaluation of existing procedures and improvements by using additional information. In: Orcutt, G., Merz, K. (eds.) Microanalytic Simulation Models to Support Social and Financial Policy, pp. 401–422. Elsevier Science, Amsterdam (1986)

    Google Scholar 

  17. Pei, J., Getoor, L., de Keijzer, A. (eds.): First ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, Paris, France, June 28. ACM, New York (2009)

    Google Scholar 

  18. van Pelt, X.: The fusion factory: A constrained data fusion approach. Master’s thesis, Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands (2001)

    Google Scholar 

  19. van der Putten, P.: Utilizing the topology preserving property of self-organizing maps for classification. Master’s thesis, Cognitive Artificial Intelligence, Utrecht University, The Netherlands (1996)

    Google Scholar 

  20. van der Putten, P.: Data mining in direct marketing databases. In: Baets, W. (ed.) Complexity and Management: A Collection of Essays, World Scientific Publishers, Singapore (1999)

    Google Scholar 

  21. van der Putten, P.: Data fusion: A way to provide more data to mine in? In: Proceedings 12th Belgian-Dutch Artificial Intelligence (2000)

    Google Scholar 

  22. van der Putten, P.: Data fusion for data mining: a problem statement. In: Coil Seminar 2000, Chios, Greece, June 22-23 (2000)

    Google Scholar 

  23. van der Putten, P., Kok, J.N., Gupta, A.: Data fusion through statistical matching. Tech. Rep. Working Paper No. 4342-02, MIT Sloan School of Management, Cambridge, MA (2002)

    Google Scholar 

  24. van der Putten, P., Kok, J.N., Gupta, A.: Why the information explosion can be bad for data mining, and how data fusion provides a way out. In: Grossman, R.L., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) SDM, SIAM, Philadelphia (2002)

    Google Scholar 

  25. van der Putten, P., Ramaekers, M., den Uyl, M., Kok, J.N.: A process model for a data fusion factory. In: Proceedings of the 14th Belgium/Netherlands Conference on Artificial Intelligence (BNAIC 2002), Leuven, Belgium (2002)

    Google Scholar 

  26. van der Putten, P., van Someren, M.: A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000. Machine Learning 57(1-2), 177–195 (2004)

    Article  MATH  Google Scholar 

  27. Radner, D., Rich, A., Gonzalez, M., Jabine, T., Muller, H.: Report on exact and statistical matching techniques. statistical working paper 5. Tech. rep., Office of Federal Statistical Policy and Standards US DoC (1980)

    Google Scholar 

  28. Raessler, S.: Statistical Matching: A Frequentist Theory, Practical Applications, and Alternative Bayesian Approaches. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  29. Roberts, A.: Media exposure and consumer purchasing: An improved data fusion technique. Marketing And Research Today 22, 159–172 (1994)

    Google Scholar 

  30. Rodgers, W.L.: An evaluation of statistical matching. Journal of Business & Economic Statistics 2(1), 91–102 (1984)

    Article  MathSciNet  Google Scholar 

  31. Rubin, D.B.: Statistical matching using file concatenation with adjusted weights and multiple imputations. Journal of Business & Economic Statistics 4(1), 87–94 (1986)

    Article  Google Scholar 

  32. Ruggles, N., Ruggles, R.: A strategy for merging and matching microdata sets. Annals Of Social And Economic Measurement 3(2), 353–371 (1974)

    Google Scholar 

  33. de Ruiter, M.: Bayesian classification in data mining: theory and practice. Master’s thesis, BWI, Free University of Amsterdam, The Netherlands (1999)

    Google Scholar 

  34. Smith, K.A., Chuan, S., van der Putten, P.: Determining the validity of clustering for data fusion. In: Proceedings of Hybrid Information Systems, Adelaide, Australia, December 11-12 (2001)

    Google Scholar 

  35. Soong, R., de Montigny, M.: Does fusion-on-the-fly really fly? In: ARF/ESOMAR Week of Audience Measurement (2003)

    Google Scholar 

  36. Soong, R., de Montigny, M.: No free lunch in data integration. In: ARF/ESOMAR Week of Audience Measurement (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Putten, P., Kok, J.N. (2010). Using Data Fusion to Enrich Customer Databases with Survey Data for Database Marketing. In: Casillas, J., Martínez-López, F.J. (eds) Marketing Intelligent Systems Using Soft Computing. Studies in Fuzziness and Soft Computing, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15606-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15606-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15605-2

  • Online ISBN: 978-3-642-15606-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics