[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Modified Binary Differential Evolution Algorithm

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Differential evolution (DE) is a simple, yet efficient global optimization algorithm. As the standard DE and most of its variants operate in the continuous space, this paper presents a modified binary differential evolution algorithm (MBDE) to tackle the binary-coded optimization problems. A novel probability estimation operator inspired by the concept of distribution of estimation algorithm is developed, which enables MBDE to manipulate binary-valued solutions directly and provides better tradeoff between exploration and exploitation cooperated with the other operators of DE. The effectiveness and efficiency of MBDE is verified in application to numerical optimization problems. The experimental results demonstrate that MBDE outperforms the discrete binary DE, the discrete binary particle swarm optimization and the binary ant system in terms of both accuracy and convergence speed on the suite of benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.V.: Differential Evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces. Technology Report. Berkeley, CA, TR-95-012 (1995)

    Google Scholar 

  2. Vesterstrom, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1980–1987. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  3. Rekanos, I.T.: Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization. IEEE Transaction on Geoscience and Remote Sensing 46, 1967–1974 (2008)

    Article  Google Scholar 

  4. Ponsich, A., Coello, C.A.: Differential Evolution performances for the solution of mixed integer constrained Process Engineering problems. Applied Soft Computing (2009), doi: 10.1016/j.asoc.2009.11.030

    Google Scholar 

  5. Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 9, 448–462 (2005)

    Article  MATH  Google Scholar 

  6. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Transaction on Evolutionary Computation 13, 398–417 (2009)

    Article  Google Scholar 

  7. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential Evolution Using a Neighborhood-Based Mutation Operator. IEEE Transaction on Evolutionary Computation 13, 526–553 (2009)

    Article  Google Scholar 

  8. Pampara, G., Franken, N., Engelbrecht, A.P.: Combining Particle Swarm Optimisation with Angle Modulation to Solve Binary Problems. In: The 2005 IEEE Congress on Evolutionary Computation, pp. 89–96. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  9. Pampará, G., Engelbrecht, A.P., Franken, N.: Binary Differential Evolution. In: Proceedings of IEEE Transaction on Evolutionary Computation, pp. 1873–1879 (2006)

    Google Scholar 

  10. He, S.X., Han, L.: A novel binary differential evolution algorithm based on artificial immune system. In: IEEE Congress on Evolutionary Computation, pp. 2267–2272. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  11. Gong, T., Tuson, A.L.: Differential Evolution for Binary Encoding. Soft Computing in Industrial Applications, ASC 39, 251–262 (2007)

    Article  MATH  Google Scholar 

  12. Chen, P., Li, J., Liu, Z.M.: Solving 0-1 Knapsack Problems by a Discrete Binary Version of Differential Evolution. In: Second International Symposium on Intelligent Information Technology Application, IITA 2008, pp. 513–516. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  13. Kennedy, J., Eberhart, R.: A Discrete Binary Version of the Particle Swarm Optimization. In: The 1997 Conference on System, man and Cybernetics, pp. 4104–4108. IEEE Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  14. Kong, M., Tian, P.: A Binary Ant Colony Optimization for the Unconstrained Function Optimization Problem. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 682–687. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A Survey of Optimization by Building and Using Probabilistic Models. Computational Optimization and Applications 21, 5–20 (2002)

    Article  MATH  Google Scholar 

  16. Baluja, S.: Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. Technical Report CMU-CS-94-163, Pittsburgh, PA: Carnegie Mellon University (1994)

    Google Scholar 

  17. Wang, L., Wang, X.T., Fu, J.Q., Zhen, L.L.: A Novel Probability Binary Particle Swarm Optimization Algorithm and Its Application. Journal of Software 3, 28–35 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Fu, X., Menhas, M.I., Fei, M. (2010). A Modified Binary Differential Evolution Algorithm. In: Li, K., Fei, M., Jia, L., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science, vol 6329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15597-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15597-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15596-3

  • Online ISBN: 978-3-642-15597-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics