[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimization of Type-2 Fuzzy Logic Controllers Using PSO Applied to Linear Plants

  • Chapter
Soft Computing for Intelligent Control and Mobile Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 318))

Abstract

We use the Particle Swarm Optimization (PSO) method to find the parameters of the membership functions of a type-2 fuzzy logic controller (Type-2 FLC) in order to minimize the state error for linear systems. PSO is used to find the optimal Type-2 FLC to achieve regulation of the output and stability of the closed-loop system. For this purpose, we change the values of the cognitive, social and inertia variables in the PSO. Simulation results, with the optimal FLC implemented in Simulink, show the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P.J.: Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89. IEEE, Los Alamitos (1998)

    Chapter  Google Scholar 

  3. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern recognition. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  4. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin (1993)

    MATH  Google Scholar 

  5. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995); Lu, J.-G.: Title of paper with only the first word capitalized. J. Name Stand. Abbrev. (in press)

    Google Scholar 

  6. Engelbretht, A.P.: Fundamentals of Computational Swarm Intelligence, England, pp. 5–129. John Wiley & Sons Ltd., Chichester (2005)

    Google Scholar 

  7. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE transactions on neural networks 5(1), 3–14 (1994)

    Article  Google Scholar 

  8. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive Tracking Control of a NonHolonomic Mobile Robot. IEEE Trans. On Robotics and Automation 16(5), 609–615 (2000)

    Article  Google Scholar 

  9. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceeding of IEEE conference on Evolutionary Computation, pp. 1671–1676 (2002)

    Google Scholar 

  10. Kennedy, J., Mendes, R.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  11. Lee, T.H., Leung, F.H.F., Tam, P.K.S.: Position Control for Wheeled Mobile Robot Using a Fuzzy Controller. IEEE, 525–528 (1999)

    Google Scholar 

  12. Martinez, R., Castillo, O., Aguilar, L.T., Rodriguez, A.: Evolutionary Optimization of type-2 Fuzzy Systems Applied to Linear Plants. To appear in System, Man, and Cybernetic Conference (2009)

    Google Scholar 

  13. Martinez, R., Castillo, O., Aguilar, L.T.: Intelligent Control For A Perturbed Autonomous Wheeled Mobile Robot Using Type-2 Fuzzy Logic and Genetic Algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 2 (2008)

    Google Scholar 

  14. Martinez, R., Castillo, O., Aguilar, L.T.: Optimization of Interval Type-2 Fuzzy Logic Controllers for a Perturbed Autonomous Wheeled Mobile Robot using Genetic Algorithms. Information Sciences, Informatics and Computer Science Intelligent Systems Applications and International Journal 179(13), 2158–2174 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinez, R., Castillo, O., Aguilar, L.T., Rodriguez, A. (2010). Optimization of Type-2 Fuzzy Logic Controllers Using PSO Applied to Linear Plants. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15534-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15533-8

  • Online ISBN: 978-3-642-15534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics