[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Machine Learning to Prescribe Warfarin

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2010)

Abstract

Predicting the effects of the blood thinner warfarin is very difficult because of its long half-life, interaction with drugs and food, and because every patient has a unique response to a given dose. Previous attempts to use machine learning have shown that no individual learner can accurately predict the drug’s effect for all patients. In this paper we present our exploration of this problem using ensemble methods. The resulting system utilizes multiple ML algorithms and input parameters to make multiple predictions, which are then scrutinized by the doctor. Our results indicate that this approach may be a workable solution to the problem of automated warfarin prescription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gallus, A., Baker, R., Chong, B., Ockelford, P., Street, A.: Consensus guidelines for warfarin therapy. Medical Journal of Australia 172, 600–605 (2000)

    Google Scholar 

  2. Roland, M., Tozer, T.: Clinical Pharmacokinetics: Concepts and Applications. Williams and Wilkins, Philadelphia (1995)

    Google Scholar 

  3. Gage, B.F., Fihn, S.D., White, R.H.: Management and dosing of warfarin therapy. The American Journal of Medicine 5, 211–228 (2000)

    Google Scholar 

  4. Jaffer, A., Bragg, L.: Practical tips for warfarin dosing and monitoring. Cleveland Clinic Journal of Medicine 70, 361–371 (2003)

    Article  Google Scholar 

  5. Dalere, G.: A graphical nomogram for warfarin dosage adjustment. Pharmacology 19, 461–467 (1999)

    Google Scholar 

  6. Schaufele, M.K., Marciello, M.A., Burke, D.T.: Dosing practices of physicians for anticoagulation with warfarin during inpatient rehabilitation. American Journal of Physical Medication and Rehabilitation 79, 69–74 (2000)

    Article  Google Scholar 

  7. Floares, A.G., Floares, C., Cucu, M., Marian, M., Lazar, L.: Optimal drug dosage regimens in cancer chemotherapy with neural networks. Journal of Clinical Oncology 22, 2134 (2004)

    Google Scholar 

  8. Narayanan, M., Lucas, S.: A genetic algorithm to improve a neural network to predict a patient’s response to warfarin. Methods of Information in Medicine 32, 55–58 (1993)

    Google Scholar 

  9. Byrne, S., Cunningham, P., Barry, A., Graham, I., Delaney, T., Corrigan, O.I.: Using neural nets for decision support in prescription and outcome prediction in anticoagulation drug therapy. In: Lavrac, N., Miksch, S. (eds.) Fifth Workshop on Intelligent Data Analysis in Medicine and Pharmacology, Berlin (2000)

    Google Scholar 

  10. Wall, R., Cunningham, P., Walsh, P., Byrne, S.: Explaining the output of ensembles in mdeical decision support on a case by case basis. Artificial Intelligence in Medicine 28, 191–206 (2003)

    Article  Google Scholar 

  11. Breiman, L.: Bagging predictors. Machine Learning 26, 123–140 (1996)

    Google Scholar 

  12. Wolpert, D.H.: Stacked generalisation. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  13. Witten, I.H., Frank, E.: Data mining. Morgan Kaufman, San Francisco (2000)

    Google Scholar 

  14. Martin, B.: Instance-based learning: nearest neighbour with generalisation. In: Computer Science. University of Waikato, Hamilton (1995)

    Google Scholar 

  15. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  16. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, B., Filipovic, M., Rennie, L., Shaw, D. (2010). Using Machine Learning to Prescribe Warfarin. In: Dicheva, D., Dochev, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2010. Lecture Notes in Computer Science(), vol 6304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15431-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15431-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15430-0

  • Online ISBN: 978-3-642-15431-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics