[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

We consider two partial-information generalizations of the metric traveling salesman problem (TSP) in which the task is to produce a total ordering of a given metric space that performs well for a subset of the space that is not known in advance. In the universal TSP, the subset is chosen adversarially, and in the TSP it is chosen probabilistically. Both the universal and TSP have been studied since the mid-80’s, starting with the work of Bartholdi & Platzman and Jaillet, respectively. We prove a lower bound of Ω(logn) for the universal TSP by bounding the competitive ratio of shortest-path metrics on Ramanujan graphs, which improves on the previous best bound of Hajiaghayi, Kleinberg & Leighton, who showed that the competitive ratio of the n ×n grid is \(\Omega(\sqrt[6]{\log n / \log \log n})\). Furthermore, we show that for a large class of combinatorial optimization problems that includes TSP, a bound for the universal problem implies a matching bound on the approximation ratio achievable by deterministic algorithms for the corresponding black-box problem. As a consequence, our lower bound of Ω(logn) for the universal TSP implies a matching lower bound for the black-box TSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartholdi, J., Platzman, L.: An o(n logn ) planar traveling salesman heuristic based on spacefilling curves. Operations Research Letters 1(4), 121–125 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bartholdi, J., et al.: A minimal technology routing system for meals on wheels. Interfaces 13(3), 1–8 (1983)

    Article  Google Scholar 

  4. Bertsimas, D., Grigni, M.: On the spacefilling curve heuristic for the euclidean traveling salesman problem. Operations Research Letters 8(5), 241–244 (1989)

    Article  MathSciNet  Google Scholar 

  5. Bertsimas, D., Jaillet, P., Odoni, A.: On the spacefilling curve heuristic for the euclidean traveling salesman problem. Operations Research Letters 38(6), 1019–1033 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (2001)

    Google Scholar 

  7. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., Zuckerman, D.: Security preserving amplification of hardness. In: FOCS, pp. 318–326 (1990)

    Google Scholar 

  9. Gorodezky, I., Kleinberg, R., Shmoys, D., Spencer, G.: Improved lower bounds for the universal and a priori TSP. In: TSP (2010) (Preprint), http://people.orie.cornell.edu/~shmoys/GKSS10.pdf

  10. Gupta, A., Hajiaghayi, M., Räcke, H.: Oblivious network design. In: SODA, pp. 970–979 (2006)

    Google Scholar 

  11. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic optimization. In: STOC, pp. 417–426 (2004)

    Google Scholar 

  12. Hajiaghayi, M., Kleinberg, R., Leighton, F.: Improved lower and upper bounds for universal tsp in planar metrics. In: SODA, pp. 649–658 (2006)

    Google Scholar 

  13. Jaillet, P.: Probabilistic traveling salesman problems. Technical Report, MIT Operations Research Center, 185 (1985)

    Google Scholar 

  14. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approximations for tsp, steiner tree, and set cover. In: STOC, pp. 386–395 (2005)

    Google Scholar 

  15. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Morgenstern, M.: Existence and explicit constructions of + 1 regular ramanujan graphs for every prime power. J. Comb. Theory, Ser. B 62(1), 44–62 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nilli, A.: On the second eigenvalue of a graph. Discrete Mathematics 91(2), 207–210 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Platzman, L., Bartholdi III, J.: Spacefilling curves and the planar travelling salesman problem. J. ACM 36(4), 719–737 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schalekamp, F., Shmoys, D.: Algorithms for the universal and a priori tsp. Oper. Res. Lett. 36(1), 1–3 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shmoys, D., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gorodezky, I., Kleinberg, R.D., Shmoys, D.B., Spencer, G. (2010). Improved Lower Bounds for the Universal and a priori TSP. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics