[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos

  • Conference paper
Brain Informatics (BI 2010)

Abstract

Recently, the field of automatic recognition of users’ affective states has gained a great deal of attention. Automatic, implicit recognition of affective states has many applications, ranging from personalized content recommendation to automatic tutoring systems. In this work, we present some promising results of our research in classification of emotions induced by watching music videos. We show robust correlations between users’ self-assessments of arousal and valence and the frequency powers of their EEG activity. We present methods for single trial classification using both EEG and peripheral physiological signals. For EEG, an average (maximum) classification rate of 55.7% (67.0%) for arousal and 58.8% (76.0%) for valence was obtained. For peripheral physiological signals, the results were 58.9% (85.5%) for arousal and 54.2% (78.5%) for valence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cacioppo, J., Berntson, G., Larsen, J., Poehlmann, K., Ito, T.: The psychophysiology of emotion. In: Handbook of Emotions, pp. 119–142 (1993)

    Google Scholar 

  2. Chanel, G., Kierkels, J., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. Int’l. Journal Human-Computer Studies 67(8), 607–627 (2009)

    Article  Google Scholar 

  3. Demaree, H.A., Everhart, E.D., Youngstrom, E.A., Harrison, D.W.: Brain lateralization of emotional processing: Historical roots and a future incorporating“dominance”. Behavioral and Cognitive Neuroscience Reviews 4(1), 3–20 (2005)

    Article  Google Scholar 

  4. Ekman, P., Friesen, W., Osullivan, M., Chan, A., Diacoyannitarlatzis, I., Heider, K., Krause, R., Lecompte, W., Pitcairn, T., Riccibitti, P., Scherer, K., Tomita, M., Tzavaras, A.: Universals and cultural-differences in the judgments of facial expressions of emotion. Journal of Personality and Social Psychology 53(4), 712–717 (1987)

    Article  Google Scholar 

  5. Kierkels, J., Soleymani, M., Pun, T.: Queries and tags in affect-based multimedia retrieval. In: Int’l. Conf. Multimedia and Expo, Special Session on Implicit Tagging (ICME 2009), New York, United States (2009)

    Google Scholar 

  6. Knyazev, G.: Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews 31(3), 377–395 (2007)

    Article  Google Scholar 

  7. Ko, K., Yang, H., Sim, K.: Emotion recognition using EEG signals with relative power values and Bayesian network. Int’l. Journal of Control, Automation and Systems 7(5), 865–870 (2009)

    Article  Google Scholar 

  8. Koles, Z.: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalography and Clinical Neurophysiology 79(6), 440–447 (1991)

    Article  Google Scholar 

  9. Lang, P., Greenwald, M., Bradely, M., Hamm, A.: Looking at pictures - affective, facial, visceral, and behavioral reactions. Psychophysiology 30(3), 261–273 (1993)

    Article  Google Scholar 

  10. Li, M., Chai, Q., Kaixiang, T., Wahab, A., Abut, H.: EEG Emotion Recognition System. In: Vehicle Corpus and Signal Processing for Driver Behavior, p. 125 (2008)

    Google Scholar 

  11. Lisetti, C.L., Nasoz, F.: Using noninvasive wearable computers to recognize human emotions from physiological signals. EURASIP J. Appl. Signal Process. 2004, 1672–1687 (2004)

    Google Scholar 

  12. Loughin, T.M.: A systematic comparison of methods for combining p-values from independent tests. Computational Statistics & Data Analysis 47, 467–485 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. McCraty, R., Atkinson, M., Tiller, W., Rein, G., Watkins, A.: The effects of emotions on short-term power spectrum analysis of heart rate variability. The American Journal of Cardiology 76(14), 1089–1093 (1995)

    Article  Google Scholar 

  14. Murugappan, M., Juhari, M., Nagarajan, R., Yaacob, S.: An investigation on visual and audiovisual stimulus based emotion recognition using EEG. Int’l. Journal of Medical Engineering and Informatics 1(3), 342–356 (2009)

    Article  Google Scholar 

  15. Russell, J.: A circumplex model of affect. Journal of Personality and Social Psychology 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  16. Solis-Escalante, T., Müller-Putz, G., Pfurtscheller, G.: Overt foot movement detection in one single laplacian EEG derivation. Journal of Neuroscience Methods 175(1), 148–153 (2008)

    Article  Google Scholar 

  17. Stemmler, G., Heldmann, M., Pauls, C., Scherer, T.: Constraints for emotion specificity in fear and anger: The context counts. Psychophysiology 38(02), 275–291 (2001)

    Article  Google Scholar 

  18. Wang, J., Gong, Y.: Recognition of multiple drivers emotional state. In: Int’l. Conf. Pattern Recognition, pp. 1–4 (December 2008)

    Google Scholar 

  19. Yazdani, A., Lee, J.-S., Ebrahimi, T.: Implicit emotional tagging of multimedia using EEG signals and brain computer interface. In: Proc. SIGMM Workshop on Social Media, pp. 81–88. ACM, New York (2009)

    Google Scholar 

  20. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5, 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koelstra, S. et al. (2010). Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics