Abstract
In this paper, a brain data integration model(BDIM) is proposed by building up the Brain Science Ontology(BSO), which integrates the existing literature ontologies used in brain informatics research. Considering the features of current brain data sources, which are usually large scale, heterogeneous and distributed, our model offers brain scientists an effective way to share brain data, and helps them optimize the systematic management of those data. Besides, a brain data integration framework(BDIF) is presented in accordance with this model. Finally, many key issues about the brain data integration are also discussed, including semantic similarity computation, new data source insertion and the brain data extraction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gardner, D., Akil, H., Ascoli, G.A., Bowden, D.M., Bug, W., Donohue, D.E., et al.: The Neuroscience Information Framework: a data and knowledge environment for neuroscience. Neuroinformatics (2008), doi:10.1007/s12021-008-9024-z
Chen, J.H., Zhong, N.: Data-Brain Modeling Based on Brain Informatics Methodology. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 41–47. IEEE Computer Society Press, Los Alamitos (2008)
Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Huebner, S.: Ontology-Based Integration of Information - A Survey of Existing Approaches. In: Proceedings of the IJCAI 2001 Workshop on Ontologies and Information Sharing, pp. 108–118 (2001)
Stuckenschmidt, H., Wache, H., Vogele, T., Visser, U.: Enabling technologies for interoperability. In: Workshop on the 14th International Symposium of Computer Science for Environmental Protection, pp. 35–46 (2000)
Uschold, M., Gruniger, M.: Ontologies: Principles, methods and applications. Knowledge Engineering Review 11(2), 93–155 (1996)
Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management, pp. 242–262. Springer, Heidelberg (2008)
Li, R., Chao, S., Li, Y., Tan, H., Zhu, Y., Zhou, Y., Li, Y.: Ontological Similarity Computation Method Based on Semantic Path Coverage. Progress in Nature Science 16(07), 916–919 (2006)
Yang, Q., Zheng, G., Xiong, Y., Zhu, Y.: Qnet-BSTM: An Algorithm for Mining Transcription Factor Binding Site from Literature. Journal of Computer Research and Development 45(suppl.), 323–329 (2009) (in Chinese)
Zhu, Y., Zhong, N., Xiong, Y.: Data Explosion, Data Nature and Dataology. In: IEEE/WIC International Conference on Brain Informatics, pp. 147–158. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xue, L., Xiong, Y., Zhu, Y. (2010). A Brain Data Integration Model Based on Multiple Ontology and Semantic Similarity. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-15314-3_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15313-6
Online ISBN: 978-3-642-15314-3
eBook Packages: Computer ScienceComputer Science (R0)